Hunter's Point South Intermediate School & High School

Long Island City, NY

M Ε C Н Α Ν C **SKANSKA** Α

Final Thesis Report

By: Britt Kern

Advisor: Dr. Stephen Treado

Date: 4/4/12

L

HUNTER'S POINT SOUTH INTERMEDIATE

SCHOOL & HIGH SCHOOL

Project Information:

Location: Long Island City, NY

Construction: Jan. 2011 - Oct. 2013

Size: 153,769 square feet

Cost: \$61 million construction cost

Levels: 5 stories, no cellar

Delivery: Lump Sum Bid

Function: Educational

Height: 73 feet

Project Team:

Owner:

NYC Department of Education

Architect:

FXFWOLE Architects

General Contractor/CM:

Skanska

Structural:

Ysreal A. Seinuk, PC

MEP/Fire Protection:

Kallen & Lemelson, LLP

Lighting Designer:

Tillotson Design

Architecture:

- Exterior Façade: grey brick, slate stone veneer, perforated steel panels, low-e coated windows, and
- Design fits into urban community redevelopment plan

Structural:

- · Load transferred to soil through 14 inch diameter cassions
- Floor system is a 3 1/4" lightweight concrete on top of a 3" metal deck
- Lateral force resisting system is concentric braced frames

Electrical/Lighting:

- 4000 Amp Main Switchboard
- 400 kW Diesel Generator
- Building Voltage is 208Y/120V
- Fluorescent lighting with MR16 track and spotlights for auditorium

Mechanical:

- · 3 CAV and 3 VAV custom made AHU's each equipped with a vfd, wrap around heat pipes for dehumidification, and 0-100% oa intake for economizer mode
- (2) 276 ton air cooled water chillers with scroll compressors
- (4) gas fired condensing boilers each capable of producing 1860 MBH
- · Heat transfer fluid for building is a 30% and 35% propylene glycol water used for cooling and heating, respectively

Sustainability:

- Striving for LEED Silver Certification
- Utilizes local materials, recycled steel, low voc emitting finishes, occupancy sensors for lighting, and solar shading
- Abides by the NYC Green Schools Guide

http://www.engr.psu.edu/ae/thesis/portfolios/ 2012/BAK5101/index.html **SKANSKA**

Table of Contents

ADSTract	2
Table of Contents	3
Executive Summary	6
Acknowledgments	8
Building Overview	9
Mechanical System Overview	9
Design Objectives, Requirements, and Conditions	10
Design Ventilation	11
Design Building Load Estimates	12
Design Energy Usage	13
Emissions	15
Mechanical Equipment Summary	17
Mechanical Equipment First Cost	19
Lost Usable Space	21
System Operations and Schematics	21
ASHRAE Standard 62.1-2007 Analysis	26
Section 5 Analysis	26
Section 6 - Procedures	29
Summary of Analysis for ASHRAE Standard 62.1-2007	32
ASHRAE Standard 90.1-2007 Analysis	33
Section 5 – Building Envelope	33
Section 6 – Heating, Ventilating, and Air-Conditioning	34
Section 7 – Service Water Heating	37
Section 8 – Power	37
Section 9 – Lighting	37
Section 10 – Other Equipment	39
Summary of Analysis for ASHRAE Standard 90.1-2007	39
LEED Rating System	40
Energy & Atmosphere	40
Indoor Environment Quality	42

Overall Mechanical System Evaluation	48
Proposal	49
Alternatives Considered	49
Mechanical Proposal	50
Breadth Topics	53
MAE Course Relation	55
Tools for Analysis	55
Mechanical Depth	56
DOAS Sizing	56
Total Energy Recovery Wheel	62
Fan Powered Induction Units	64
Secondary Chilled Water Loop Piping	67
New Chillers	75
MAE - CFD Analysis	81
Electrical Breadth	105
Structural Breadth	113
Results	115
Energy Reduction and Costs	115
Life Cycle Cost Analysis	120
Emissions	122
Conclusion	124
References	125
Appendix A – List of Tables	127
Appendix B – List of Figures	129
Appendix C – Minimum Ventilation Calculation	132
Appendix D – Latent Load Calculation	138
Appendix E – NYC Mechanical Code Ventilation	142
Appendix F – Comparing Ventilation Requirements	145
Appendix G – Minimum Ventilation Calculation	149
Appendix H – ESP Supply Fan DOAS 1	154

Appendix I – ESP Return Fan DOAS 1	155
Appendix J – ESP Supply Fan DOAS 2	156
Appendix K – ESP Return Fan DOAS 2	157
Appendix L – DOAS 1 Manufacturer's Specifications	158
Appendix M – DOAS 1 Dimensions	166
Appendix N – DOAS 2 Manufacturer's Specifications	167
Appendix O – DOAS 2 Dimensions	175
Appendix P – Cooling Calculations FPIU	176
Appendix Q – Cooling Coil FPIU Sizing	180
Appendix R – FPIU Specifications	181
Appendix S – Heating Calculations FPIU	182
Appendix T – Heating Coil FPIU Sizing	186
Appendix U – RS Means New Duct Cost Calculation	187
Appendix V – Secondary Chilled Water Loop Head Calculation	188
Appendix W – Pump Sizing Schematic	189
Appendix X – Pump Pricing	190
Appendix Y – YVAA0245CEV17 (225 Ton Chiller) Specifications	191
Appendix Z – YCAL0033EE17 (33.4 Ton Chiller) Specifications	194
Appendix AA – Momentum Method	197
Appendix AB – Net Area Ratio	200
Appendix AC – SunPower 308 Solar Panel	201
Appendix AD – SunPower PowerGuard	203
Appendix AE – Satcon 75 kW Inverter	205
Appendix AF – Wire Sizing Calculations	207
Appendix AG – NEC Tables used for Wire Sizing	210
Appendix AH – Balanced Switchboard 2	213
Appendix AI – Structural Calculations	214
Appendix AJ – Vulcraft Non-Composite Deck	226
Appendix AK – W Shape Selection	230
Appendix AL – Column Selection	233
Appendix AM – Structural Upgrades Cost Calculations	234

Executive Summary

One alternative was considered in this analysis because all the changes made were linked to one another and depended upon the previous change of work. In this analysis, the existing mechanical system in Hunter's Point South School was compared against the institution of a dedicated outdoor air system with fan-powered inductions units for the terminals. With the changes made to this DOAS/FPIU design, a secondary chilled water loop was created to distribute a higher temperature chilled water to the FPIU's cooling coils. Total energy recovery wheels were used in both DOAS's to recover energy from the room exhaust air. Lastly, with the clearing of roof space a 68.99 kW photovoltaic solar system was installed on the roof. It was found that minor structural upgrades would have to be made to strengthen the roof deck/slab and girders under the solar array.

In comparing the costs, it was found that the new alternative would save \$1,273,311 in upfront mechanical cost. This is more than enough to front the costs for the photovoltaic solar array and structural upgrades. When throwing these two items in, the new alternative saved \$958,143 in initial costs. The new alternative also managed to save on electricity and natural gas usage. Electricity usage was reduced by 7% and natural gas by 41%. This led to a decrease in total energy costs of 13%. The natural gas had a huge decrease in use due to the addition of the total energy recovery wheels in the DOAS's being used to preheat the OA during the winter months. The wheels were able heat the OA so much that preheat coils were not needed in the DOAS's except as a backup for safety. With the energy and upfront savings, a 25 year life cyclecost analysis was performed. Bringing both the costs back to a net present value found that the new proposed designs would save \$2,018,185 over the existing design.

With the changing of the terminal units and air distribution to the rooms, a computational fluid dynamics (CFD) study was performed on a common classroom. This was done to determine if the new system's air distribution to the space would create a thermally comfortable and draft free environment for the students during the winter design peak. The current variable air volume box design was also tested for full flow and 30% turndown. The analysis focused on the area of the room occupied by the students because this was felt to be the most critical zone. In the new FPIU layout, it was found that the room had a uniform temperature gradient right at the setpoint temperature of 72°F with no drafts being caused in the student section. The two VAV layouts produced problematic results. It was found that the space was being overheated in both scenarios and a huge draft problem occurred in the 30% turndown case. From the results of the CFD analysis, it was determined that the new FPIU layout would create a thermally comfortably, draft-free environment for the occupants.

A big objective of the redesign of the mechanical system was to create a more sustainable, green building with increased comfort control. Temperature control of rooms will be greatly increased because the FPIU's allow for extra heating and cooling to be accomplished at each space. The new FPIU system will provide each room with the correct amount of ventilation air, something that is problematic when VAV boxes are turned down. The emissions of the new design reduced greatly. There was a 16% reduction in CO₂ equivalent. The photovoltaic solar array will produce emission free electricity for years. It can also serve as an educational function for students in teaching green technologies. Through all the changes proposed to Hunter's Point South School, a new cheaper, healthier schoolhouse will be created.

Acknowledgements

Throughout the process of writing and performing the below analyses for my thesis, I was blessed with a lot of help and support along the way. I would like to take this page to express my gratitude and appreciation for all the guidance I received. Though not everyone may be listed, I wanted to take a moment to share the names of those that took the time out of their busy schedules to lend me a hand.

Patrick Murphy Mechanical Engineer, Vanderweil Engineers

Chris Bratz Mechanical Engineer, Meta Engineers

Carter Tse Mechanical Engineer, Kallen & Lemelson

Sharvil Patel Construction Manager, Skanska

Tim Dorman Sales Engineer, Havtech

David Cunningham Sales Engineer, Johnson Controls

Justin Anderson Terminal Unit Product Manager, Krueger

Dr. Stephen Treado Thesis Advisor, Penn State

Also, I would like to especially thank the whole AE Department, faculty, staff, and my fellow peers. Lastly, thanks to all my family and friends. I can't express how daunting this task would have been if not for the support from everyone along the way.

Building Overview

Hunter's Point South Intermediate School & High School is a public school for grades 5 through 12 serving the PS 287 Queens School district. Hunters Point is a five story school that will house over 1,000 students. It consists of 26 classrooms, 8 special education classrooms, library, gym, assembly space, cafeteria with open terrace seating, kitchen, and support spaces. The building is a part of the Hunter's Point South Project, a redevelopment of the 30 acre Queens area to become a more sustainable, middle income urban community along the waterfront park. This redevelopment in Queens also includes residential housing, apartments, retail space, community/cultural facilities, parking, and a new 11 acre waterfront park.

Mechanical System Overview

Conditioned air is served to Hunter's Point South Intermediate School & High School via the six rooftop air handling units. Units 1, 2, and 3 are variable air volume (VAV) systems that service the classrooms, offices, corridors, and non-public spaces. Units 4, 5, and 6 are constant air volume (CAV) systems that serve the gymnasium, cafeteria/kitchen, and auditorium, respectively. All air handling units have variable frequency drives, wrap around heat pipes for dehumidification, and economizer controls. Preheat coils in the AHU's use a 35% propylene glycol – water mixture while the cooling coil utilizes a 30% propylene glycol – water mixture. This heat-transfer fluid has low toxicity and volatility. It poses little harm to humans in case of a leak.

Four natural gas fired, condensing boilers are used for Hunter's Point South School's heating needs. These boilers are located in the mechanical penthouse's boiler room. Each boiler can produce 1860 MBH worth of 35% propylene glycol – water mixture which is used for the AHU's, perimeter fin tube radiators, unit heaters, and cabinet heaters. All heating hot water and secondary pumps are located in the boiler room along with the hot and chilled water expansion tanks. Two 276 ton air cooled chillers with scroll compressors are also located on the roof. A 30% propylene glycol – water mixture is cooled by the R-410a refrigerant which is used for the AHU's cooling coils.

Cabinet and unit heaters are used to heat the building's entrances, locker rooms/showers, and stairwells. Split heat pumps are utilized in the telecom rooms on each floor, food storage, and elevator machine room. The outdoor section of each heat pump is located on the roof. Fin tubed radiators are used along the perimeter walls to heat the space in conjunction with AHU's. Upblast and mushroom fans are located on the roof where they exhaust air from the science lab's fume hoods and kitchen.

Design Objectives, Requirements, and Conditions

Hunter's Point South School is a schoolhouse for grades 5 through 12 which is located in Queens, New York. It is part of the Hunter's Point South Project which is a process to redevelop the 30 acre area in Queens to become a more sustainable, middle income urban community. Hunter's Point South School's architecture as well as building maintenance was designed with this idea in mind. The school is also held to the requirements of the New York City Green School Guide which further reinforces the strive for a green, efficient building.

The classrooms house a large number of occupants which consumes a huge amount of energy. Since the classrooms have a fluctuating number of occupants throughout the day, it would be costly and inefficient to run the rooms at full load all day for ventilation and lighting. This was considered in the design so to help reduce energy consumption, VAV boxes were used to vary the flow of conditioned air to the spaces. Occupancy sensors for lighting control were also included to save electricity.

Hazardous chemicals are used in the laboratories and science classrooms. This inherent concern was accounted for in the design phase. Fume hoods with exhaust fans are used to help flush out potentially harmful chemicals. Strict standards were imposed on the quality of duct used for the chemical exhaust and the inside of the ducts are negatively pressurized to prevent leakage of the chemical exhaust to surrounding spaces.

Hunter's Point South School was commissioned under the New York City Board of Education. All new schoolhouses in New York City must abide by the New York City Green School Guide. The NYC Green School Guide is a document that outlines standards that new schools must follow. The standards outlined are geared towards making these new schoolhouses more energy efficient and sustainable. Since Hunter's Point South School must follow this, no emphasis was put forth to go for LEED certification (even though the NYC Green School Guide is fairly similar to the USGBC's LEED rating system).

The NYC Board of Education has commissioned many school houses as well as created ties with power companies in the area. This has led to beneficial relations between the board and power companies. Hunter's Point South School receives their electricity from the New York Power Authority (NYPA). The rates for energy prices can be seen below in Table 1 for Hunter's Point South School.

Energy P	rices		
Type	Price		
Electricity (from	ć0 10/kWh		
NYPA)	\$0.19/kWh		
Natural Gas			
(based on	\$1.542/therm		
National Grid	\$1.542/ tilefili		
firm charges)			

Table 1 – Energy Prices

Hunter's Point South School is located in Long Island City, New York in the Queens borough. It sits in the Mixed-Humid Climate Zone according to ASHRAE Standard 90.1 and has roughly 5,400 heating degree days or fewer. Below in Table 2 are the outdoor design conditions for the school.

ASHRAE HoF 2009 Chapter 14					
Appendix: Climate Data					
JFK Airport, NY dB Temp					
0.4% Cooling	89.7°F				
99.6% Heating 12.8°F					

Table 2 – Outdoor Design Air Conditions

Table 3 below shows the room design conditions for the spaces in Hunter's Point South School.

Room Design Temperatures					
Winter	72°F Dry Bulb				
Summer	75°F Dry Bulb				

Table 3 – Indoor Design Conditions

Design Ventilation

Appendix C contains the excel spreadsheets of each air handler's results for minimum outdoor air intake using the calculations from ASHRAE Standard 62.1-2007 Section 6 for ventilation. For AHU's 4, 5, and 6, the minimum ventilation supplied to each room is contrasted against the design condition. The NYC Green Schools Guide requires all new schools, such as Hunter's Point South Intermediate School & High School, to be designed to use above 30% minimum ventilation air calculated in ASHRAE Standard 62.1. This is outlined in Q1.1R Minimum IAQ Performance/Increased Ventilation in the NYC Green Schools Guide. Compliance with this increase in air has also been added to the analysis and can be seen Table 4 below.

	Type	Min OA Intake	Vot	Compliant?	30% Above Vot	Above 30% Compliant?
AHU-1	VAV	14945	12218	Yes	15883	No
AHU-2	VAV	19445	18971	Yes	24662	No
AHU-3	VAV	13210	10954	Yes	14240	No
AHU-4	CAV	13360	7085	Yes	9211	Yes
AHU-5	CAV	11840	6259	Yes	8488	Yes
AHU-6	CAV	6325	2657	Yes	3454	Yes

Table 4 – Air Handling Units' Section 6 of ASHRAE Standard 62.1 Compliance

Since Hunter's Point South School is located in Queens, New York ventilation requirements must be checked against both the ASHRAE Standard 62.1-2007 Section 6 and the New York State Mechanical Code 2007 using values from Section MC 403. The zone primary outdoor air fraction (Zp) values found using the NYS Mechanical Code are slightly higher than the ASHRAE ones. However, these values are not shown because they are irrelevant in the end. They are irrelevant because the above 30% outside air calculated from ASHRAE Standard 62.1 dominates the New York State Mechanical Code values. This 30% increase makes the ASHRAE required outside air the driving factor in this comparison.

Design Building Load Estimates

To evaluate the heating and cooling loads of Hunter's Point South School, Trane TRACE 700 was used. The results generated can be seen below in Table 5.

	Conditioned Space (sf)				Cooling Capacity per Area	Heating Capacity per Area	Total Heating (Btuh)	Total Cooling (tons)
		Cooling	Heating	(sf/ton)	(tons/sf)	(Btuh/sf)		
AHU-1	30637	0.65	0.37	296.6	0.0034	52.91	1,621,100	103.3
AHU-2	29722	0.89	0.5	218.5	0.0046	52.58	1,562,800	136
AHU-3	22567	0.89	0.52	213.1	0.0047	50.38	1,136,900	105.9
AHU-4	12735	2.08	2.08	99.0	0.0101	74.54	949,300	128.6
AHU-5	11449	1.69	1.69	182.3	0.0055	59.28	678,700	62.8
AHU-6	4341	3.63	3.63	93.0	0.0108	98.76	428,700	46.7
Unit Heaters	6963	n/a	0.42	n/a	n/a	24.82	172,800	n/a
Total Building	118414	1.081	0.865	203.9	0.0049	55.32	6,550,300	583.3

Table 5 - TRACE Loads

Load calculations were also provided by the design engineer for comparison. This can be seen below in Table 6. For this project, the design loads calculated in TRACE were used.

		Supply Air		Cooling	Heating		Total
	Conditioned	per unit area	Area per Cooling	Capacity per	Capacity per	Total Heating	Cooling
	Space (sf)	(cfm/sf)	Capacity (sf/ton)	Area (tons/sf)	Area (Btuh/sf)	(Btuh)	(tons)
AHU-1	28115	0.98	286.5	0.0035	37.82	1,063,259	98.12
AHU-2	27690	1.04	232.5	0.0043	48.83	1,351,976	119.1
AHU-3	21646	1.14	234.6	0.0043	43.36	938,642	92.25
AHU-4	12527	1.48	113.8	0.0088	70.87	887,731	110.1
AHU-5	9833	1.62	144	0.0069	80.1	787,669	68.27
AHU-6	4341	2.01	110.7	0.009	84.01	364,697	39.21
Stairs	1080	2.91	186.3	0.0054	65.47	70,713	5.8
South Entrance	800	0.72	0	0	31.29	25,034	0
Total Building	106032	1.20	201	0.005	51.77	5,489,721	532.85

Table 6 – Designer's Load Calculations

Design Energy Usage

The energy usage for Hunter's Point South School was found by doing an energy model in Trane TRACE 700. It was calculated that the current design uses 1,614,418 kWh per year and 42,285 therms of natural gas a year. This equates to a total energy bill of \$371,941 dollars a year (\$304,739 electric and \$65,202 natural gas). A comparison between the designer engineer's values and the ones calculated in TRACE can be seen below in Table 7.

	Electricty (kWh	Natural Gas	E	lectricity	atural Gas Cost per	Tot	al Cost per	ost per are Foot
	per year)	per year)		st per year	year	100	year	Building
Design Engineer	1,720,210	6,740	\$	290,640	\$ 104,066	\$	394,706	\$ 2.58
Existing Building (TRACE)	1,614,418	4,228	\$	306,739	\$ 65,202	\$	371,941	\$ 2.43
Difference	105,792	2,511	\$	(16,099)	\$ 38,864	\$	22,765	\$ 0.15
% Difference	6%	37%		-6%	37%		6%	6%

Table 7 – Energy Usage TRACE vs. Design Engineer

The energy cost found using TRACE is much higher for electricity. This would come down some if the occupancy sensors for lighting were able to be modeled in TRACE. Even though the TRACE values are much different than the design engineer's numbers, the values found in the TRACE model were used for comparison later on with the proposed design changes because both use the same basic TRACE model.

The energy usage of the school can be seen broken down month by month for electricity in Figure 1 and natural gas in Figure 2.

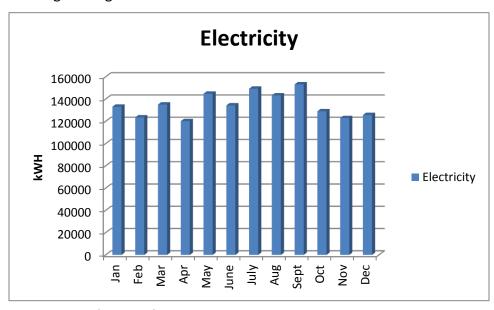


Figure 1 – Electricity Usage by Month

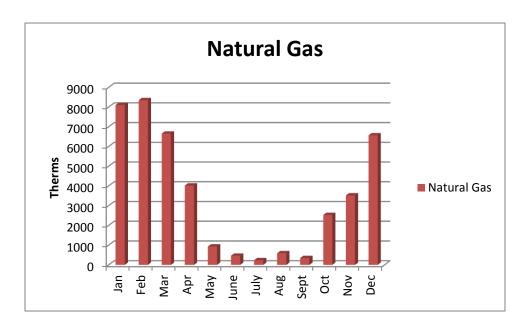


Figure 2 – Natural Gas Usage by Month

The energy consumption breakdown for Hunter's Point South School can be seen below in Figure 3.

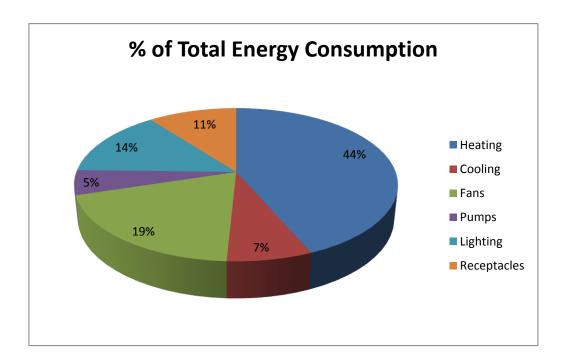


Figure 3 – Energy Usage Breakdown of Existing Building

Emissions

The emissions created by electricity, on site combustion, and transportation for fuel to the building can be seen below in Tables 8 through 10 for the current design of Hunter's Point

South School.

Pollutant	lb of pollutant per kWh of electricity	Ib of pollutant per year due to electricity
CO _{2e}	1.03E+00	1,662,850.54
CO ₂	9.61E-01	1,551,455.70
CH4	2.59E-01	418,134.26
N ₂ O	1.68E-05	27.12
NOx	1.72E-03	2,776.80
SOx	6.23E-03	10,057.82
CO	1.75E-03	2,825.23
TNMOC	6.38E-05	103.00
Lead	5.59E-08	0.09
Mercury	3.99E-08	0.06
PM10	6.87E-05	110.91
Solid Waste	6.18E-02	99,771.03
kWh/year =	1,614,418	

Table 8 – Base Building Electricity Emissions

Pollutant	lb of pollutant per 1000 cubic ft of natural gas	Ib of pollutant per year due to on-site combustion
CO _{2e}	1.23E+02	520,093.20
CO ₂	1.22E+02	515,864.80
CH4	2.50E-03	10.57
N ₂ O	2.50E-03	10.57
NOx	1.11E-01	469.35
SOx	6.32E-04	2.67
CO	9.33E-02	394.51
VOC	6.13E-03	25.92
Lead	5.00E-07	0.00
Mercury	2.60E-07	0.00
PM10	8.40E-03	35.52
cubic fee	t of natural gas =	4228400

Table 9 – Base Building Emissions On-Site Combustion

Pollutant	lb of pollutant per 1000 cubic ft of natural gas	Ib of pollutant per year due transportation to site
CO _{2e}	2.78E+01	117,549.52
CO ₂	1.16E+01	49,049.44
CH4	7.04E-01	2,976.79
N ₂ O	2.35E-04	0.99
NOx	1.64E-02	69.35
SOx	1.22E+00	5,158.65
CO	1.36E-02	57.51
TNMOC	4.56E-05	0.19
Lead	2.41E-07	0.00
Mercury	5.51E-08	0.00
PM10	8.17E-04	3.45
PM-unspecified	1.42E-03	6.00
Solid Waste	1.60E+00	6,765.44
cubic feet of na	4228400	

Table 10 – Base Building Emissions Fuel Transportation

The total pollutants generated in a year by the school can be seen in Table 11 below and Figure 4.

Pollutant	Total Pollutants (lb of pollutant)
CO2e	2,300,493.26
CO ₂	2,116,369.94
CH4	421,121.63
N ₂ O	38.69
NOx	3,315.50
SOx	15,219.14
CO	3,277.25
TNMOC	103.19
VOC	25.92
Lead	0.09
Mercury	0.07
PM10	149.88
PM-unspecified	6.00
Solid Waste	106,536.47

Table 11 – Total Emissions

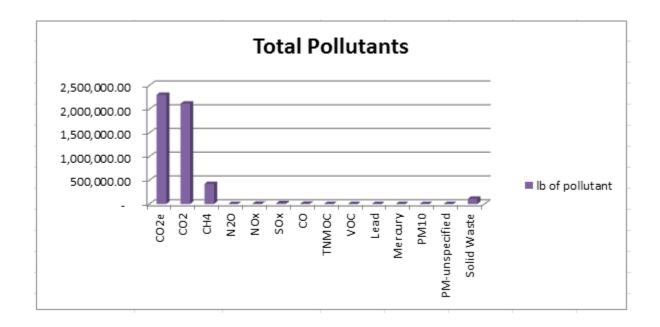


Figure 4 – Total Emissions

Mechanical Equipment Summary

The mechanical systems in Hunter's Point South School are primarily located on the roof. Two air cooled chillers and six air handling units are located here along with the outdoor sections of each of the heat pumps and many of the exhaust fans. The mechanical penthouse on the roof houses the four condensing boilers along with their pumps and the expansion tanks. The emergency generator is also located in a room in the penthouse. The roof space is mainly used for the mechanical equipment because no basement exists for Hunter's Point South School. Due to direct exposure to the elements on the roof, a propylene glycol – water mixture has been used instead of water to prevent freezing in the pipes and coils. Below in Tables 12 through 15 is the breakdown of information for the boilers, chillers, heat pumps, and exhaust fans, respectively.

Boiler Schedule							
Heating Capacity Efficiency Unit No. Location Type (MBH) (minimum) EWT LWT Horsepower							
B-1, B-2, B-3, or B-4	Boiler Room (on roof)	Gas Fired Condensing Boiler	1860	85.3%	120°F	140°F	56

Table 12 – Boiler Schedule

	Chiller Schedule							
Unit No. Location Type (tons) COP/EER EWT LWT GPM								
ACH-1 or ACH-2	Roof	Air cooled with scroll compressors	276	3.25/11.1	54°F	44.4°F	710	

Table 13 – Chiller Schedule

	Heat Pump Schedule							
Unit No.	Service	Air Flow (CFM)	Heating Capacity (MBH)	Cooling Capacity (MBH)	System EER			
AC-1	Telecom Room	790	45	42	15.8			
AC-2	Telecom Room	425	0	12	13.8			
AC-3	Telecom Room	425	0	12	13.8			
AC-4	Telecom Room	425	0	12	13.8			
AC-5	Telecom Room	425	18	12	13.8			
AC-6	Food Storage	425	18	12	13.8			
AC-7	Elevator Machine Room	425	0	12	13.8			

Table 14 – Heat Pump Schedule

	Exhaust Fan Schedule						
				Capacity			
Unit No.	Service	Location	Туре	(cfm)	Motor HP		
Ke-1	Kitchen Gneral Exhaust (5th Flr)	Roof	Upblast	3000	1.5		
Ke-2	Kitchen Hood Exhaust (5th Flr)	Roof	Upblast	7050	5		
Ke-3	Can Wash Room Exhaust (5th Flr)	Roof	Mushroom	320	1/4		
EF-1	Fume Hood Exhaust	Roof	Nozzle	1300	1.5		
EF-2	Fume Hood Exhaust	Roof	Nozzle	1300	1.5		
EF-3	Science Lab General Exhaust	Roof	Mushroom	700	1/3		
EF-4	Fume Hood Exhaust	Roof	Nozzle	1300	1.5		
EF-5	Main Toilets & Locker Room Exhaust	Roof	Mushroom	5910	3		
EF-6	I/S Boy's & Girl's Locker Room Exhaust	Roof	Mushroom	1060	1/2		
EF-7	H/S Boy's & Girl's Locker Room Exhaust	Roof	Mushroom	1440	3/4		
EF-8	Copy Room Exhaust	Roof	Mushroom	300	1/4		
EF-9	Kitchen Men's & Women's Toilet	Roof	Mushroom	400	1/6		
		Plumbing Room					
EF-10	General Exhaust	(1st Flr)	In-Line	1310	1/2		
		Equipment Room					
EF-11	Electric Service Room Exhaust	(1st Flr)	In-Line	1000	1/3		
		Fuel Oil Room					
EF-12	Fuel Oil Tank Room Exhaust	(1st Flr)	In-Line	220	1/4		
EF-13	Emergency Generator Room Exhaust	Generator Room	In-Line	650	1/4		
		Equipment					
EF-14	Elevator Machine Room	Storage (1st Flr)	In-Line	220	1/4		
EF-15	Gas Meter Room	Gas Room (1st Flr)	In-Line	220	1/4		
EF-16	Kitchen Detergent Room	Roof	Mushroom	100	1/6		
EF-17	Kiln Unit	Roof	Mushroom	150	1/6		
EF-18	Acid Storage Cabinets	Roof	Mushroom	150	1/6		
SF-1	Boiler Room Supply	Boiler Room	In-Line	850	1/4		

Table 15 - Exhaust Fan Schedule

AHU-1, AHU-2, and AHU-3 are all part of a variable air volume system. VAV boxes are used to manage the flow of air to the spaces served by these air handlers in an attempt to save energy costs. Each air handler (AHU-1 through 6) has variable frequency drives, wrap around heat pipes for dehumidification, and the ability to run in economizer mode. Temperature drops across the heating coils and heating terminal units is 20°F. The cooling coils in the air handlers have a 10°F temperature drop across them. Table 16 below shows the AHU's breakdown.

	Air Handler Unit Schedule										
					Minimum	Heating	Cooling		Supply		Return
				Supply/Return	OA/Exhaust	Capacity	Capacity	Supply	Fan HP	Return	Fan HP
Unit No.	Service	Location	Type	CFM	CFM	(MBH)	(MBH)	Fans	(each)	Fans	(each)
	Classrooms, Offices,										
AHU-1	Corridors, and Non-Public	Roof	VAV	30,000/27,000	14,945/11,945	1,266.8	1,389.7	2	30	2	15
	Classrooms, Offices,										
AHU-2	Corridors, and Non-Public	Roof	VAV	31,700/27,100	19,445/14,845	1,367.7	1,562.8	2	30	2	15
	Classrooms, Offices,										
AHU-3	Corridors, and Non-Public	Roof	VAV	27,000/24,300	13,210/10,510	1,111.4	1,270.9	2	25	2	10
AHU-4	Gymnasium	Roof	CAV	20,860/18,560	13,360/11,060	1,232.5	1,222.9	2	20	2	7.5
AHU-5	Café/Kitchen	Roof	CAV	18,700/12,500	11,840/5,640	1,096.5	916.2	1	40	1	10
AHU-6	Auditorium	Roof	CAV	9,600/9,200	6,325/5,925	443.8	492.0	1	20	1	10

Table 16 – Air Handler Unit Schedule

Information for the pumps used in Hunter's Point South School can be seen below in Table 17. Note that pumps P-1, P-2, and P-3 distribute a 35% propylene glycol water mixture while P-4 through P-6 distribute a 30% propylene glycol water mixture. FOP-1 and FOP-2 both pump fuel oil for the emergency generator.

	Pump Schedule						
			Capcaity	Head	Motor Size		
Unit No.	Service	Location	(GPM)	(ft)	(HP)		
P-1	Heating Hot Water	Boiler Room (on roof)	330	110	20		
	Heating Hot Water						
P-2	(Stand-By)	Boiler Room (on roof)	330	110	20		
P-3	Heating Hot Water	Boiler Room (on roof)	330	110	20		
	Secondardy Chilled						
P-4	Water (ACH-1)	Boiler Room (on roof)	710	100	30		
	Secondary Stand By						
P-5	for P-3 or P-5	Boiler Room (on roof)	710	100	30		
	Secondardy Chilled						
P-6	Water (ACH-2)	Boiler Room (on roof)	710	100	30		
	Emergency Generator						
FOP-1 or 2	on Roof	Plumbing Room (1st Flr)	2	18	1/2		

Table 17 – Pump Schedule

Mechanical Equipment First Cost

The total cost of the mechanical equipment for Hunter's Point South School is \$7,750,000. This equates to \$50.40 per square foot of the building. The price includes furnish and installation of all the outlined equipment. Table 18 below has a breakdown of the cost for the different mechanical systems. To further clarify what each system encompasses, read below the table.

Mechanical Cost Breakdown				
Туре	Cost (\$)	Cost per square foot (\$/sf)		
AHU's	1,190,000	7.74		
Chillers	820,000	5.33		
Boilers	260,000	1.69		
Heat Pumps	49,000	0.32		
Fin Tube Radiators	300,000	1.95		
Unit/Cabinet Heaters	143,000	0.93		
VAV Boxes	216,000	1.40		
Fan Powered Boxes	16,000	0.10		
HVAC Piping	1,250,000	8.13		
Ducts	1,479,500	9.62		
HVAC Controls	910,000	5.92		
Pumps	32,000	0.21		
Convectors	14,000	0.09		
Fans	80,000	0.52		
Dampers	55,000	0.36		
Diffusers/Grills	100,000	0.65		
Emergency Generator/Fuel Oil	182,000	1.18		
Glycol	35,000	0.23		
Miscellaneous	38,500	0.25		
Overhead	580,000	3.77		
Total	7,750,000	50.40		

Table 18 – Mechanical Cost Breakdown

- The Boilers cost includes the chemical treatment as well as the boilers.
- The HVAC Piping includes all piping for the HVAC equipment. This includes piping to and from the equipment, anchors/guides, and insulation. The plumbing piping is not included in this number.
- Ducts cost include insulation, silencers, and all supply and return duct runs.
- The HVAC Controls include all the controls needed to run the different mechanical equipment and systems. Pressure valves are also included here.
- Fans include the 12 rooftop and 10 in-line exhaust fans. The fans in the AHU's and chillers' condensers are not included here, rather in their respective tab.
- The Emergency Generator/Fuel Oil includes all costs associated with this system. This includes piping, controls, pump set, tank, generator, and ducts.
- Miscellaneous includes the cost of the seismic restraint, hot water pumps' inertia pads, and the hot and cold make up water.

Overhead includes the cost of the site project supervisor, project management, commissioning/punch lists, shop drawings, and submittals.

Lost Usable Space

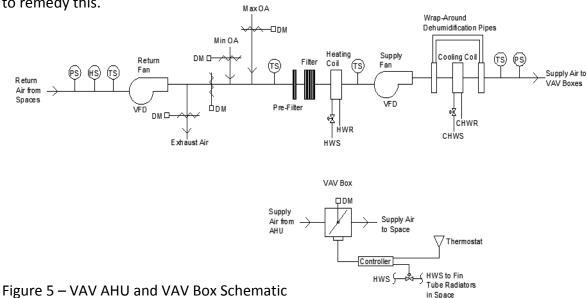
Mechanical equipment as well as duct runs require floor space and detract from the overall usable building area. Below in Table 19 is a breakdown of the floor space used by the mechanical equipment.

The Fuel Oil Room feeds the emergency generator and the Gas Room supplies the boilers with natural gas. Space is lost on each floor from ducts that run between floors. This lost area is found under the "Shafts" breakdown. The "Penthouse" is located on the roof and includes the emergency generator, boiler, and mechanical storage rooms. Pumps and expansion tanks are located in the Boiler Room. "Penthouse" area is not included in the overall lost usable space because it is not considered usable space. This information was included to reflect how much actual space the mechanical systems occupy. Furthermore, lost usable space is saved by the air handlers and chillers being located on the roof. Hunter's Point South School has no basement.

The floor area lost to electrical and plumbing systems is not included in this breakdown. Further floor area is lost to these two systems.

Lost Usuable Space					
	Location	Floor Area			
Space Type	(Floor)	(square feet)			
Fuel Oil Room	1st	132			
Gas Room	1st	120			
Shafts	2nd-5th	1429			
Mechanical Penthouse	Roof	1924*			
	Total	1681			
	*Note: Not included in total.				

Table 19 – Lost Usable Space


System Operations and Schematics

Air Side

AHU's 1, 2, and 3

Below in Figure 5 is a schematic for a typical VAV AHU (AHU 1, 2, or 3) as well as a terminal VAV box. This AHU serves the classrooms, offices, corridors, and non-public areas with the necessary heating, cooling and ventilation needed. The return fan and supply fan are both equipped with variable frequency drives (VFD) so air can be modulated to the spaces or from them depending upon the needs. The minimum outside damper is opened whenever the AHU is in use. All AHU's have the ability to run in economizer mode so the controls operating the damper motors of the minimum outside air, maximum outside air, and exhaust air dampers are all linked together. As much as 100% outside air can be supplied. A temperature sensor (TS) and humidity sensor (HS) measure the return air conditions. A TS and HS are also located outside the AHU to measure the outdoor conditions. The readings from the return air sensors and outdoor air sensors work in conjunction with the space requirements to run the economizer mode which modulates the dampers. Both the heating coil and cooling coils use two way valves to modulate the amount of the propylene glycol – water mixture flow. The heating coil performs the function of a preheat coil as well as having the ability to serve as a regular heating coil.

The dehumidification of the supply air is accomplished by the wrap-around heat pipes (which wraps around the cooling coil). A precool heat pipe is upstream of the cooling coil while a reheat heat pipe is downstream. The precool heat pipe brings the warm air temperature down bringing it closer to its dew point. Dehumidification can then occur across the cooling coil and the reheat heat pipe then brings the supply air back up to its appropriate temperature. A solenoid control valve is used to modulate the flow through the heat pipes which is controlled by the outdoor and return humidity sensors. Finally a pressure sensor on the return and supply side checks to make sure the pressure is balanced. If the pressure is off, the fans will vary flow to remedy this.

The VAV box modulates based upon the space's need. The controller is run by the thermostat in the room and controls the damper motor and hot water supply to the fin tube radiators. Each VAV box has a minimum turndown so each space will still receive minimum ventilation.

AHU's 4, 5, and 6

AHU's 4, 5, and 6 are constant air volume systems. These AHU's serve the gymnasium, cafeteria/kitchen, and auditorium, respectively. Each fan motor in the AHU's has a VFD and the ability to run in economizer mode. A VFD is provided on the fans to ensure that the proper CFM will be maintained when the filters get dirty. A schematic for AHU 4, 5, or 6 can be seen below in Figure 6. Essentially the AHU's work like the VAV AHU's above except that there are no VAV terminal boxes and a constant volume of air is supplied.

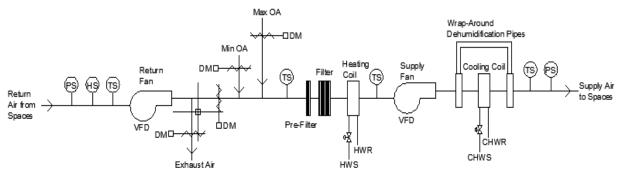


Figure 6 - CAV AHU

Water Side

Chilled Water System

The chilled water system is composed of two packaged air-cooled water chillers in parallel that serve the cooling coils of the AHU's. This system can be seen below in Figure 7. The chilled water loop is a primary-only variable flow design. The flow thorough the chillers' evaporators shall vary with the load. The bypass valve is used to maintain the minimum flow through the chillers' evaporators (when they are on). The flow to the terminal loads vary depending upon the amount of gpm required. The chilled propylene glycol – water mixture is supplied at a temperature of 44.4°F and sent to the AHU's cooling coils. The return temperature is designed to be $54^{\circ}F$, giving an approximate ΔT of $10^{\circ}F$ for cooling. The chilled propylene glycol – water mixture supplied from the chillers can bypass the cooling coils through the low flow bypass. This bypass is controlled by a differential pressure sensor across it. When the load at the terminals can no longer be met by one chiller, the second chiller will modulate on as well as the pump. An air separator and expansion tank are located on the return side of the chilled water.

Temperature sensors are located on the upstream and downstream of the chillers to determine the loads needed to be produced by the evaporators and that the chillers are operating properly. A flow sensor (GPM in schematic) is used to measure flow from the chillers and to check that the system is functioning properly.

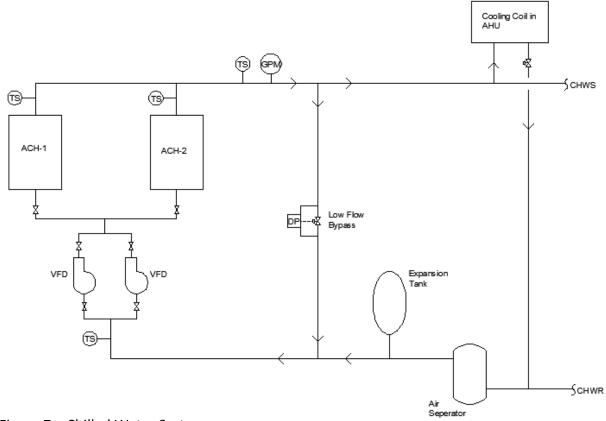


Figure 7 – Chilled Water System

Hot Water System

Natural gas is piped in through the gas meter in the Gas Room on the first floor. It is then piped up through the building to the boilers in the mechanical penthouse. The boilers, air separator, expansion tank, and pumps for the hot water system are all located in the mechanical penthouse. The four natural gas fired, condensing boilers can produce 1860 MBH each of 35% propylene glycol – water mixture. The three hot water circulating pumps have variable frequency drives (one pump is used for standby). The pumping system is variable primary flow with a bypass line. The bypass line is controlled by a differential pressure sensor. The hot propylene glycol – water mixture is supplied at 140°F to the AHU's heating coils, fin tube radiators, cabinet heaters, and unit heaters. The solution is returned at 120°F giving a ΔT of 20°F for heating. Check valves control flow through the boilers and pumps. An air separator and expansion tank are located on the supply side. The hot water system can be seen below in Figure 8.

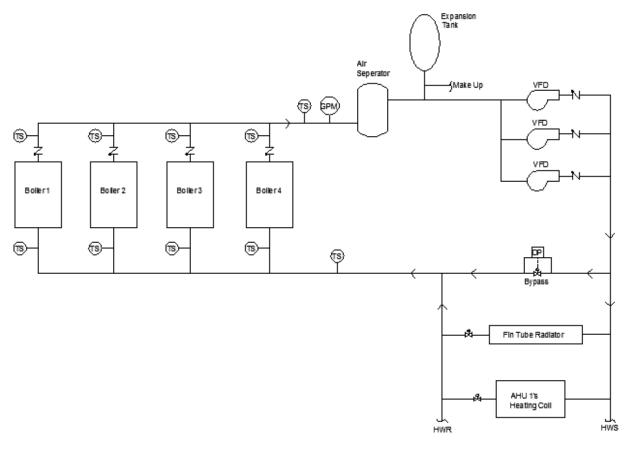


Figure 8 – Hot Water System

ASHRAE Standard 62.1-2007 Analysis

Section 5 Analysis

5.1 Natural Ventilation

Perimeter rooms have manually operable windows but the building spaces are mechanically ventilated. Natural ventilation is not used.

5.2 Ventilation Air Distribution

Hunter's Point South Intermediate School & High School was designed to comply with Q 1.1R Minimum IAQ Performance/Increased Ventilation from the NYCSA's Green School Guide. It meets minimum ventilation standards set forth in Section 6 of ASHRAE Standard 62.1-2007.

5.3 Exhaust Duct Location

Fume hoods/acid cabinets located in the science classrooms and kitchen hoods each have their own separate ducting for exhaust. The main bathrooms and some locker rooms share common exhaust ducting. All exhaust ducts are negatively pressured to the surrounding spaces to prevent leaks.

5.4 Ventilation System Controls

All six air handling units have two intake dampers for outside air. One is dedicated for minimum outside air while the other is modulated to help reduce energy costs. Variable air volume boxes have minimum turn down for dampers so airflow into the spaces complies with minimum outside air from Section 6 of ASHRAE Standard. 62.1-2007.

5.5 Airstream Surfaces

Duct work is made from sheet metal; aluminum, galvanized steel, and stainless steel with metal fasteners. Therefore duct work complies with the mold growth and erosion resistance outlined in this section. Fiberglass lining for ducts is in compliance with ASTM C1338 (to prevent mold) and UL 181 (to resist erosion). Flexible ducts are made from spiral-wound steel or corrugated aluminum and comply with UL 181.

5.6 Outdoor Air Intakes

All outdoor air intakes for AHU's are over 30 feet away from lab fume hood exhaust vents. AHU's have intake and exhaust outlets on opposite sides, each of which have stormproof louvers or hoods to prevent entrainment of rainwater and an aluminum bird screen. Access doors to AHU's are easily accessible and have as much as an eight foot clearance around them.

The only questionable aspect to the compliance for Hunter's Point South School to this section is a shaft smoke vent which is located eight feet from AHU-2's intake. If AHU-2 is designed to turn off in the event of a fire, then the school is in compliance. However, no information could be found on the controls logistics that would incur during a fire for AHU-2's intake.

5.7 Local Capture of Contaminants

All noncombustion equipment (ex. fume hoods, kitchen equipment, etc.) have separate ducting to the roof with their own dedicated fans. The diesel oil storage tank located on first floor exhausts vapors through a vent brick in the wall.

5.8 Combustion Air

The emergency generator and boilers have direct venting to the atmosphere for their flue gas through the roof and wall louvers of the mechanical roof penthouse. Adequate air is provided to the four gas fired condensing boilers for combustion.

5.9 Particulate Matter Removal

All six AHU's have a set of two filters located upstream of the cooling coil that comply with UL 900-1994. The first filter is a 2" thick, pleated type pre-filter that has a minimum efficiency of MERV 7. The second filter is a 12" thick cartridge filter that has a minimum efficiency of MERV 13.

5.10 Dehumidification Systems

Dehumidification is accomplished by the wrap-around dehumidifier heat pipes in each AHU. Relative humidity is limited below 65 percent by these heat pipes. The minimum outdoor air intake is greater than the minimum exhaust for each air handler, so a positive pressure in the building may be contained during dehumidification processes.

5.11 Drain Pans

The drain pans in the six AHU's extend 1" upstream and 3" downstream of the cooling coils. The pans consist of one-piece seamless stainless steel that is pitched towards the drain outlet. Drain pans for the wrap around dehumidification heat pipes have the same specifications as the ones outlined above for the AHU's cooling coils. All drain pans comply with this section.

5.12 Finned-Tube Coils and Heat Exchangers

Split heat pumps have drain pans with integrated condensate pumps to distribute condensate to the nearest sanitary drain with air gap. The finned tube radiators have 48 fins per foot. The number of coils varies per radiator, being either 1 or 2 coils. There is no mention of the 18" intervening access space, however the pressure drop is less than 0.75 in wg so the equipment outlined in this section complies.

5.13 Humidifiers and Water-Spray Systems

No humidifiers or water-spray systems are used in Hunter's Point South School. This section does not apply.

5.14 Access for Inspection, Cleaning, and Maintenance

Hunter's Point South School complies with this section. All six AHU's have multiple access doors measuring 24" wide (some 30") by 72" in height. The doors are situated so all required equipment may be serviced, including the wrap-around heat pipes. There is an eight foot clearance around access doors to allow workers plenty of space for inspection and maintenance.

5.15 Building Envelope and Interior Surfaces

The exterior walls of Hunter's Point South contain an air/vapor barrier and crystalline waterproofing which is applied to the CMU blocks. The face brick façade has weeping holes at its base to drain accumulated water. The roof and foundation both use a rubberized asphalt sheet membrane to prevent water infiltration. Ductwork and piping that has the potential to fall below the local dew point will have adequate preventative insulation.

5.16 Buildings with Attached Parking Garages

There is no attached parking garage to Hunter's Point South Intermediate School & High School. This section does not apply.

5.17 Air Classification and Recirculation

The majority of air in Hunter's Point South School is Class 1 air. Class 1 air is returned through the ceiling plenum and recirculated back to the rooftop AHU's where it can be reused or exhausted. Class 1 air is also used to supply the restrooms in the building. Class 2 air from the restrooms and locker rooms is ducted separately and exhausted on the roof. Grease hoods and laboratory hoods exhaust the Class 4 air through their own separate ducts and vents on the roof.

5.18 Requirements for Buildings Containing ETS Areas and ETS-Free Areas

No ETS Areas exist in Hunter's Point South School. This section is irrelevant.

Section 6 - Procedures

The six air handling units used in Hunter's Point South Intermediate School & High School were tested to verify their compliance with ASHRAE Standard 62.1-2007 Section 6 Ventilation Rate Procedure. The individual AHU's service multiple floors which have a variety of spaces. Due to this it was beneficial to break up the zones into single rooms (or grouped rooms when multiple similar occupancy type rooms existed) when analyzing the minimum required ventilation needed. Below are the equations and tables used from ASHRAE Std. 62.1-2007 to complete the Section 6 analysis, along with their variable definitions.

Ventilation Rate Procedure

Breathing Zone Outdoor Airflow (V_{bz}):

$$V_{bz} = R_p \cdot P_z + R_a \cdot A_z \tag{Eq. 6-1}$$

Where:

 V_{bz} = breathing zone outdoor airflow – the design outdoor airflow required in the breathing zone of the occupiable space or spaces in a zone

 R_p = outdoor airflow rate required per person (cfm/person), determined from Table 6-1

 P_z = zone population — the number of occupants in the space, this can be estimated based on the occupant density in Table 6-1

 R_a = outdoor airflow rate required per unit area (cfm/ft²), determined from Table 6-1

 A_z = zone floor area (ft²)

Zone Air Distribution Effectiveness (E₇):

$$E_z = \#$$
 (From Table 6-2)

Where:

 E_z = 1 for ceiling supply of cool air.

All AHU's serve conditioned air to zones through ceiling diffusers. It was assumed that all interior spaces would only need cooling and exterior rooms' heating needs would be supplied by the fin tubed radiators. Therefore an E_z value of 1 was used for all rooms.

Zone Outdoor Airflow (Voz):

$$V_{oz} = V_{hz}/E_z$$
 (Eq. 6-2)

Where:

 V_{oz} = zone outdoor airflow, the outdoor airflow that must be provided to the zone by the supply air distribution system

Zone Primary Outdoor Air Fraction (Z_n) :

$$Z_p = V_{oz}/V_{pz}$$
 (Eq. 6-5)

Where:

 V_{pz} = zone primary airflow, the primary airflow to the zone from the air handler including outdoor air and recirculated return air

System Ventilation Efficiency (E_v):

Use Table 6-3 to determine E_{ν} , however if max Z_{p} is greater than 0.55 than Appendix A must be used to compute E_v.

Zone Ventilation Efficiency (E_{vz}) for Single Supply Systems:

$$E_{vz} = 1 + X_s - Z_d$$
 (Eq. A-1)

Where:

 X_s = average outdoor air fraction at the primary air handler

$$X_s = V_{ou}/V_{ps}$$

 V_{ou} = uncorrected outdoor air intake

 V_{ns} = system primary airflow, the total primary airflow supplied to all zones served by the system from the air handling unit at which the outdoor air intake is located

 Z_d = discharge outdoor air fraction

$$Z_d = V_{oz}/V_{dz}$$

 V_{dz} = zone discharge airflow, the expected supply airflow to the zone that includes primary airflow and locally recirculated airflow

Uncorrected Outdoor Air Intake (Vou):

$$V_{ou} = D \cdot \sum_{all\ zones} (R_p \cdot P_z) + \sum_{all\ zones} (R_a \cdot A_z)$$
 (Eq. 6-6)

Where:

D = occupant diversity

Occupant Diversity (D):

$$D = P_s / \sum_{all\ zones} P_z \qquad \text{(Eq. 6-7)}$$

Where:

 P_s = system population, the total population in the area served by the system

Outdoor Air Intake (Vot):

$$V_{ot} = V_{ou}/E_{v}$$
 (Eq. 6-8)

Appendix A contains the excel spreadsheets of each air handler's results for minimum outdoor air intake using the above calculations for ventilation. For AHU's 4, 5, and 6, the minimum ventilation supplied to each room is contrasted against the design condition. The NYC Green Schools Guide requires all new schools, such as Hunter's Point South Intermediate School & High School, to be designed to use above 30% minimum ventilation air calculated in ASHRAE Standard 62.1. This is outlined in Q1.1R Minimum IAQ Performance/Increased Ventilation in the NYC Green Schools Guide. This is also a requirement for a LEED point that Hunter's Point South School is pursuing. Compliance with this increase has also been added to the analysis and can be seen in Table 4 on page 8.

Occupant density (from Table 6-1) was not used to determine the number of people per space because exact occupant numbers were given in the design. Some assumptions were made based on the occupancy type for rooms where no similar match could be found. These assumptions for occupancy type can be seen in the excel spreadsheets.

For VAV systems, V_{pz} is equal to the minimum turn down for the VAV box. Hs Special Education Room 517 (AHU-2) has a very low turndown for its VAV box. It is so low that the minimum outside air needed will not be met when it is turned down fully, even if supply air is 100% outside air. The Z_p and E_{vz} values calculated for it were disregarded because they created an unrealistic strain on the system's necessary ventilation. The VAV box can supply up to 660 cfm to Room 517. This cfm is more than sufficient for the minimum ventilation. This means that the damper on the VAV box will rarely ever be turned down low for this room, perhaps it will just be turned down during the night when there is no occupancy so as to save on energy costs.

Table 4 on page 8 contains the minimum outdoor air intakes and calculated V_{ot} for each AHU. Each AHU surpassed the corresponding calculated Vot. However, AHU's 1 through 3 do not supply the above 30% minimum ventilation required for the LEED's point. This is fairly alarming considering the high priority given to meeting the standards set by the NYC Green Schools Guide and LEED's criteria. AHU's 1 through 3 are all VAV systems with VAV boxes. The minimum outside air intakes were all calculated with the VAV boxes turned down to their minimum supply position (worst case scenario). AHU's 1 through 3 do have the ability to supply up to 100% outside air. The ability to supply up to 100% outside air with the combination of a good controls system should allow AHU-1, AHU-2, and AHU-3 to meet the above 30% minimum ventilation.

Summary of Analysis for ASHRAE Standard 62.1-2007

Hunter's Point South Intermediate School & High School complied with all the requirements in Section 5. There was only one area that caused concern which was the smoke vent located in close proximity to AHU-2's intake. The requirements for minimum ventilation were greatly surpassed in Section 6 for all AHU's. Three of the AHU's even met the above 30% minimum ventilation for a LEED's credit; the other ones may too depending upon the control system logistics. Hunter's Point South was designed to meet the guidelines set forth by the New York City Green Schools Guide. This governing body has helped push the envelope for the efficiency and HVAC design in Hunter's Point South School.

ASHRAE Standard 90.1-2007 Analysis

Section 5 – Building Envelope

5.1.4 Climate Zone

From Figure B-1 and Table B-1 in ASHRAE Standard 90.1-2007 it was determined that Hunter's Point South Intermediate School & High School is located in climate zone 4A. This climate zone is named Mixed-Humid and has roughly 5,400 heating degree days or fewer.

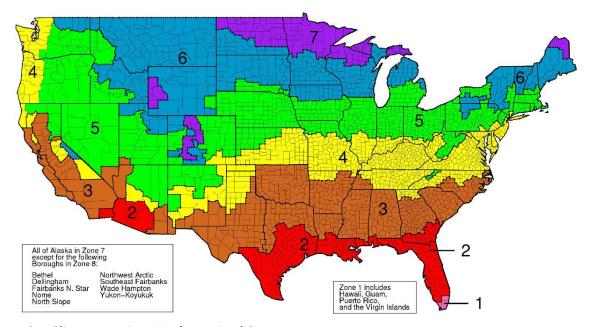


Figure 9 – Climate Regions in the United States

5.4 Mandatory Provisions

Hunter's Point South has two enclosed vestibules located directly across from each other on the north and south side. All the doors open inwards toward the vestibule and have self-closing devices. The closest doors are located roughly eight feet apart so the doors need not be opened at the same time.

5.5 Prescriptive Building Envelope Option

Hunter's Point South School has nonresidential conditioned spaces. Below in Table 20, the compliance for Hunter's Point South School's opaque elements is shown and tested against the corresponding U-values, C-values, and F-values. Fenestration is also shown in Table 20. Note that Hunter's Point South has no basement and thus no walls below grade. No skylights exist in Hunter's Point South either. The Insulated Translucent Sandwich Panel System (ITSPS) and typical windows have both been represented under fenestration. The total building glazing area is calculated and compared in Table 21.

Building Envelope Requirements for Zone 4A							
	Assembly Maximum	Insulation Min. R-Value	Hunter's Point	Standard 90.1-2007 Compliance?			
Exterior Opaque Elements:							
Roofs - Insulation Entirely above Deck	U-0.048	R-20.0 c.i.	U-0.05	No			
Walls, Above Grade Mass	U-0.104	R-9.5c.i.	U-0.056	Yes			
Slab-On-Grade Floors - Unheated	F-0.73	NR	F-0.49	Yes			
Fenestration:							
Vertical Glazing - Metal Framing							
Typical Window	U-0.50	SHGC-0.4	U-0.30, SHGC-0.38	Yes			
ITSPS	U-0.50	SHGC-0.4	U-0.28, SHGC-0.23	Yes			

Table 20 – Building Envelope Requirements

	Glazing Area	Façade Area	Percent	Standard 90.1-2007
	(sf)	(sf)	Glazing	Compliance?
Hunter's Point South School	16,978	70,080	24.2%	Yes

Table 21 – Vertical Fenestration Area

All exterior features of Hunter's Point South School complied with the maximum assembly values except for the roof, which barely missed compliance. The glazings used in the typical low e-coating windows and insulated translucent sandwich panel system (ITSPS) greatly surpassed the threshold needed. Since Hunter's Point School must follow the NYC Green Schools Guide, it is held too much higher constraints for energy efficiency than the ASHRAE Standard 90.1-2007 contains. The total glazing area of the façade is well under 40% of the building's exterior area. Though some facades are composed of mainly glazing, the all brick façades on the southeast corners balanced this out.

Section 6 – Heating, Ventilating, and Air-Conditioning

6.2 Compliance Path

Hunter's Point South Intermediate School & High School cannot use the Simplified Approach for HVAC Systems because it does not meet the requirements. The school is 153,769 square feet and five stories tall. This is much greater than the 25,000 square feet and two stories restraint needed for Section 6.3. The Mandatory Provisions method shall be used for Hunter's Point South School.

6.4 Mandatory Provisions

Minimum equipment efficiencies are met for the HVAC equipment in Hunter's Point South School. Below in Table 22 are a few examples of the equipment characteristics. The systems used in Hunter's Point South School must abide by the NYC Green School Guide, which is based off of ASHRAE requirements but contain more stringent goals. The values used in Table 3 were pulled from Table 6.8.1A through 6.8.1G in ASHRAE Standard 90.1-2007.

			ASHRAE 90.1-
	Required Minimum	Hunter's Point	2007
	Efficiency	South School	Compliant?
Air Cooled Water Chiller (with			
condenser and electrically operated)	COP 2.8	COP 3.25	Yes
Gas-Fired Boiler (hot water)	75%	85.3-93%	Yes
Split Heat Pump			
(air cooled, cooling mode)	SEER 10.0	EER 13.8	Yes

Table 22 – System Efficiencies

Thermostats in each zone control the heating and cooling needs for the space. For rooms serviced by both VAV boxes and radiators or convectors, the two shall work integrally to control the room conditions. Spaces are maintained at a temperature of 72°F when occupied, with a cooling set point of 78°F and a heating set point of 65°F. Carbon dioxide sensors are used for demand controlled ventilation in the auditorium and gymnasium. All AHU's are equipped with air-side economizers to further save on energy costs. A night time setback temperature of 55°F (heating) or 86°F (cooling) is used so energy is not wasted conditioning the spaces at night.

Table 23 below shows the insulation needed for the different pipes. All ductwork requires 2" rigid fiberglass or flexible fiberglass insulation except for exposed ductwork (with 55°F duct temperature in cooling mode) in finished spaces that they serve and exhaust.

Pipe Insultion Thickness					
	Material	≤1.5"	2"-4"	>4"	
Cold Water	Fiberglass	1.0	1.5	1.5	
Hot Water	Fiberglass	1.0	2.0	2.0	
Refrigerant (-32 to 0°F)	Fiberglass	1.5	2.0	2.0	
Refrigerant (0 to 39°F)	Fiberglass	1.0	1.5	1.5	

Table 23 – Pipe Insulation Thickness

All duct sealant and their adhesives comply with the South Coast Air Quality Management District (SCAQMD) Rule #1168 and the Sheet Metal and Air Conditioning Contractors' National Association (SMACNA). This complies with ASHRAE Standard 90.1-2007.

6.5 Prescriptive Path

Dampers in the all the AHU's provide 0-100% modulation of outside air, exhaust air, and return air for economizer operation. The air-side economizers are run by dry bulb and relative humidity control of outside and return air dampers. The high-limit shutoff controls meet the requirements in Table 6.5.1.1.3B for the economizers.

The compliance with Table 6.5.3.1.1A Fan Power Limitations in ASHARAE Standard 90.1-2007 is shown below in Table 24. All fans in the AHU's have variable frequency drives. The majority of other fans in the building are centrifugal fans. Due to the controls in the building and spaces, every fan has the ability for variable volume control except FPB-1 and FPB-4, which service the Science Preparation Rooms. These two fans are constant air volume (CAV) due to the nature of the Science Preparation Rooms. These two rooms are used for instructors' to prepare chemicals for student use. They have very low occupancy needs but when in use the chemicals must be flushed out through the fume hoods. From values calculated, all fans comply except for the supply fans in each AHU.

Fan Power					
					Compliant with ASHRAE
			CFM	VAV (CFM x	Standard 90.1-
Unit	# of Fans	HP	(each)	0.0015)	2007?
AHU-1	2	30	15000	22 1/2	No
	2	15	13500	20 1/4	Yes
AHU-2	2	30	15850	23 7/9	No
	2	15	13550	20 1/3	Yes
AHU-3	2	25	13500	20 1/4	No
	2	10	12150	18 2/9	Yes
AHU-4	1	20	10430	15 2/3	No
	1	7 1/2	9280	14	Yes
AHU-5	1	40	18700	28	No
	1	10	12300	18 4/9	Yes
AHU-6	1	20	9600	14 2/5	No
	1	10	9200	13 4/5	Yes
KE-1	1	1 1/2	3000	4 1/2	Yes
KE-2	1	5	7050	10 4/7	Yes
KE-3	1	1/4	320	1/2	Yes
EF-1	1	1.5	1300	2	Yes
EF-2	1	1.5	1300	2	Yes
EF-3	1	1/3	700	1	Yes
EF-4	1	1 1/2	1300	2	Yes
EF-5	1	3	5910	8 6/7	Yes

Fan Power					
raii Powei					
					Compliant with
					ASHRAE
			CFM	VAV (CFM x	Standard 90.1-
Unit	# of Fans	HP	(each)	0.0015)	2007?
EF-6	1	1/2	1060	1 3/5	Yes
EF-7	1	3/4	1440	2 1/6	Yes
EF-8	1	1/4	300	4/9	Yes
EF-9	1	1/6	400	3/5	Yes
EF-10	1	1/2	1310	2	Yes
EF-11	1	1/3	1000	1 1/2	Yes
EF-12	1	1/4	220	1/3	Yes
EF-13	1	1/4	650	1	Yes
EF-14	1	1/4	220	1/3	Yes
EF-15	1	1/4	220	1/3	Yes
EF-16	1	1/6	100	1/7	Yes
EF-17	1	1/6	150	2/9	Yes
EF-18	1	1/6	150	2/9	Yes
SF-1	1	1/4	850	1 2/7	Yes
FPB-2	1	1/3	560	5/6	Yes
FPB-3	1	1/3	925	1 2/5	Yes
				CAV (CFM x	
				0.0011)	
FPB-1	1	1/2	1200	1 1/3	Yes
FPB-4	1	1/2	1200	1 1/3	Yes

Table 24 – Fan Power

6.7 Submittals

A 100% Construction Document Submission was made to the NYC Green School Guide shortly after the start of construction to make sure the requirements of the guide were upheld in design. The New York City School Construction Authority (NYC SCA) has approved the building of Hunter's Point South School through design and system submissions. Hunter's Point South School is also design intended to be LEED Silver so an application for LEED certification will be

submitted at completion. Commissioning shall take place at the completion of construction. Records of Hunter's Point South Intermediate School & High School shall be kept by the NYC SCA.

Section 7 – Service Water Heating

7.4 Mandatory Provisions

The four condensing gas fired boilers in the boiler room are used to condition spaces' thermal needs. They need not be reviewed in this section because they do not supply potable water; they supply a 35% propylene glycol – water mixture only for heating purposes. One gas fired water heater is used to supply domestic hot water to Hunter's Point South School. The water heater was specified to comply with all efficiency guidelines set up in ASHRAE Standard 90.1-2007. The water heater tank has insulation with a minimum value of R-13.4 and a designed E₁ of no less than 81%. It complies with all requirements of Section 7.

7.5 Prescriptive Path

The gas fired water heater is not used to heat spaces. This section is irrelevant for it.

Section 8 – Power

Hunter's Point South School is governed by the 2005 National Electric Code (NEC). The feeder conductors' and branch circuit voltage drops that must be met in the NEC surpass the requirements set up in ASHRAE Standard 90.1-2007. Therefore, Hunter's Point South School is compliant with this section. Construction drawings contain the necessary single-line diagrams and locations/areas served for the electrical distribution systems. On completion, the needed manuals and maintenance manuals shall be provided to the building operators.

Section 9 – Lighting

9.2 Compliance Path

The Building Area Method has been chosen for analysis for Hunter's Point South School.

9.4 Mandatory Provisions

Occupancy sensors that control lighting have been installed in all classrooms and some offices for Hunter's Point South School. They are set to turn the room lighting off 15 minutes after no occupants have been detected. These sensors combined with room switches control the lights in the areas. Hunter's Point South School uses a lighting control system clock that automatically turns lights off/on based upon the schedule. A separate schedule is used for interior and exterior lights. The system has an eight year back-up and automatically adjusts for daylight savings.

9.5 Building Area Method Compliance Path

Exterior lights have been included in these calculations. For a school, the max lighting power density is 1.2 W/ft². Hunter's Point South School has a LPD of 0.844 W/ft² which is well below the mandated maximum. Below, Table 25 has the breakdown of the lighting fixtures and fixture wattage by floors which led to the calculated value.

			Li	ghting (Power De	ensity		
Fixture	1st	2nd	3rd	4th	5th	Penthouse	W/fixture	Total W
Α	1						100	100
С	2	2	2	2			25	200
TA	63	118	215	226	86		64	45312
TA-1		11	18		4		96	3168
ТВ	29				2		32	992
TB-1	15				3	9	32	864
TC	19	69	57	53	36		64	14976
TC-1	44	5	5	5	13		64	4608
TD		32					256	8192
TF	15	21	10	8			32	1728
TF-1	48	39	3	6	5		32	3232
TF-2	11	9	6	10	20		32	1792
TG	10						32	320
TL	53	12	5	34	14	21	64	8896
TL-1		24					32	768
TM				30			128	3840
TN			41	36			3	231
TR				29			100	2900
TS	50						36	1800
П	22	17	11	3	93		64	9344
TU	5						26	130
TAA-1			6	4	9		50	950
TAA-2				4			50	200
TAB	12	15	20	20	14		64	5184
TAB-1	1	4			4		128	1152
TAC	2	1					64	192
TAC-1	1		2	2	2		32	224
TAD					17		64	1088
TAE					38		64	2432
TTB				3			100	300
TTH				8			575	4600
Exit Sign	15	7	12	10	9	1	2	108
						To	otal Watts =	129823
						Buil	ding Area =	153796
							W/SF =	0.844

Table 25 – Lighting Power Density

Section 10 – Other Equipment

Minimum efficiencies for electrical motors are defined in this section based upon their horsepower and revolutions per minute. Below in Table 26, the evaluation of the pumps in Hunter's Point South School is shown. None of the pumps comply with the minimum efficiencies outlined in this section. The centrifugal fan motors are designed to meet the 2007 New York State Energy Conservation Construction Code and ASHRAE 90.1. All the centrifugal fans therefore meet or exceed the requirements.

Electric Motors									
Pumps	Efficiency	НР	RPM	Minimum Efficiency	ASHRAE Standard 90.1-2007 Compliance				
P-1	74.8	20	1750	91	No				
P-2	74.8	20	1750	91	No				
P-3	74.8	20	1750	91	No				
P-4	81.4	30	1750	92.4	No				
P-5	81.4	30	1750	92.4	No				
P-6	81.4	30	1750	92.4	No				

Table 26 – Flectric Motors

Summary of Analysis for ASHRAE Standard 90.1-2007

Overall Hunter's Point South Intermediate School & High School did very well in its comparison to the requirements for ASHRAE Standard 90.1-2007. It passed all requirements except for the U-value for roof assembly; the supply fans in the AHU's did not meet the fan power limitations, and the motor efficiency for the pumps. The U- and R-values for the building enclosure all far surpass the minimum standards. The glazing especially stands out and will greatly help save energy on the thermal loads induced on the building. The supply fans in the AHU's may not comply with the fan power limitations but they do have variable frequency drives which will help save on fan energy. The majority of electric motors in the building do comply; it is only the pumps that fall short. The least efficient pump is only off by roughly 16% to meet efficiency.

It is no surprise Hunter's Point South School did so well in this evaluation. The school was designed under the strict energy conscious standards set forth by the NYC Green Schools Guide.

LEED Rating System

The LEED rating system is not followed by Hunter's Point South School. This is because it follows the New York City Green School Guide. This guide is outlined very similar to LEED and is required for new schools in New York City. The attempt is to make these school houses more sustainable and green. Thus, Hunter's Point South School is very environmentally conscious but will not strive for any LEED status or even certification.

The NYC Green School Guide is based very much on the USGBC's LEED rating system. Many of the points for both systems overlap. Because of this, the analysis of the LEED rating system was still done and is outlined below for the mechanical systems of Hunter's Point South School.

Energy & Atmosphere

EA Prerequisite 1: Fundamental Commissioning of the Building

(Required)

Intent – Verify that the building's energy related systems are installed, calibrated and perform according to the owner's project requirements, basic of design, and construction documents.

Execution – Upon completion of work, a test shall be conducted in the presence and under direction of a licensed professional engineer or registered architect (retained by the contractor) who is qualified to run such tests. These tests shall show compliance with the code requirements for ventilation and proper operation of the HVAC devices.

EA Prerequisite 2: Minimum Energy Performance

(Required)

Intent – Establish the minimum level of energy efficiency for the proposed building and systems.

Execution – Hunter's Point South School complies with Sections 5.4, 6.4, 7.4, 8.4, 9.4, and 10.4 of ASHRAE Standard 90.1-2007 and from the building model ran by the design engineers there is a 28.3% reduction in yearly energy cost from the baseline building of ASHRAE Standard 90.1-2007 Appendix G.

EA Prerequisite 3: Fundamental Refrigerant Management

(Required)

Intent – Reduce ozone depletion.

Execution – No CFC-based refrigerants are used. The chillers and heat pumps use R-410a as a refrigerant.

EA Credit 1: Optimize Energy Performance

(6 of 10 Points)

Intent – Achieve increasing levels of energy performance above the baseline in the prerequisite standard to reduce environmental and economic impacts associated with excessive energy use.

Execution – Following Appendix G of ASHRAE Standard 90.1-2007, Hunter's Point South School will save 28.3% in yearly energy cost over the base building. Since Hunter's Point South School is a new building it has stricter requirements and will only receive 6 out of the possible 10 points.

EA Credit 2: On-Site Renewable Energy

(0 of 3 Points)

Intent – Encourage and recognize increasing levels of on-site renewable energy self-supply in order to reduce environmental and economic impacts associated with fossil fuel energy use.

Execution – No energy is generated from on-site renewable energy sources.

EA Credit 3: Enhanced Commissioning

(0 of 1 Point)

Intent – Begin the commissioning process early during the design process and execute additional activities after systems performance verification is completed.

Execution – The commissioning for Hunter's Point South School does not begin until the construction phase. No input is gathered from the commissioners during the design phase.

EA Credit 4: Enhanced Refrigerant Management

(1 of 1 Point)

Intent – Reduce ozone depletion and support early compliance with the Montreal Protocol while minimizing direct contributions to global warming.

Execution – Following Option 2, a value of 44.4 was calculated for the weighted average atmospheric impact due to the chillers and heat pumps. This is lower than the bar set at 100 by LEED and therefore complies.

EA Credit 5: Measurement & Verification

(0 of 1 Point)

Intent – Provide for the ongoing accountability of building energy consumption over time.

Execution – No plans could be found to outline such a program being set forth.

EA Credit 6: Green Power

(1 of 1 Point)

Intent – Encourage the development and use of grid-source, renewable energy technologies on a net zero pollution basis.

Execution – Hunter's Point South will use 360,703 kWh per year of allocated green power for 2 years. This is above the 35% building's electricity from renewable sources required by this credit.

Indoor Environmental Quality

EQ Prerequisite 1: Minimum IAQ Performance

(Required)

Intent – Establish minimum indoor air quality (IAQ) performance to enhance indoor air quality in buildings, thus contributing to the comfort and well-being of the occupants.

Execution – Hunter's Point South School follows both ASHRAE Standard 62.1 Section 6 and the New York City Mechanical Code for minimum ventilation.

EQ Prerequisite 2: Environmental Tobacco Smoke (ETS) Control

(Required)

Intent – Minimize exposure of building occupants, indoor surfaces, and ventilation air distribution system to Environmental Tobacco Smoke (ETS).

Execution – No smoking is allowed in Hunter's Point South School and smoking areas outside of the building are located far enough away as to comply with this prerequisite.

EQ Credit 1: Outdoor Air Delivery Monitoring

(1 of 1 Point)

Intent – Provide capacity for ventilation system monitoring to help sustain occupant comfort and well-being.

Execution $-CO_2$ sensors are located in spaces of high occupancy. VAV boxes are controlled to distribute at least the minimum amount of outside air required. This credit is attainable.

EQ Credit 2: Increased Ventilation

(0 of 1 Point)

Intent – Provide additional outdoor air ventilation to improve indoor air quality for improved occupant comfort, well-being and productivity.

Execution – From technical report one, all constant air volume AHU's meet the above 30% minimum rates. However, the variable air volume AHU's do not meet this requirement. This credit is not attainable unless the minimum supplied fraction on the VAV boxes is ramped up.

EQ Credit 3.1: Construction IAQ Management Plan: During Construction

(1 of 1 Point)

Intent – Reduce indoor air quality problems resulting from the construction/renovation process in order to help sustain the comfort and well-being of construction workers and building occupants.

Execution - The construction methods comply with the SMACNA (Sheet Metal and Air Conditioning National Contractors Association) and filters are required to have a MERV of 8 during construction for return air grilles.

EQ Credit 3.2: Construction IAQ Management Plan: Before Occupancy

(1 of 1 Point)

Intent – Reduce indoor air quality problems resulting from the construction/renovation process in order to help sustain the comfort and well-being of construction workers and building occupants.

Execution - Through Option 1, a flush-out of Hunter's Point South School will occur prior to occupancy. It is up to the owner to determine which type of flush-out to use.

EQ Credit 4.1: Low-Emitting Materials: Adhesives & Sealants

(1 of 1 Point)

Intent - Reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.

Execution - Adhesives and sealants used fall below the VOC limits outlined in this credit. Hunter's Point South School was designed with low VOC emission in mind.

EQ Credit 4.2: Low-Emitting Materials: Paints & Coatings

(1 of 1 Point)

Intent – Reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.

Execution – Paints and coatings used fall below the VOC limits outlined in this credit.

EQ Credit 4.3: Low-Emitting Materials: Carpet Systems

(1 of 1 Point)

Intent – Reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.

Execution – Carpets installed meet the necessary requirements and adhesives used fall below the VOC limits outlined.

EQ Credit 4.4: Low-Emitting Materials: Composite Wood & Agrifiber Products

(1 of 1 Point)

Intent – Reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.

Execution – Composite wood and agrifiber products do not use any urea-formaldehyde resins. This credit is attainable.

EQ Credit 5: Indoor Chemical & Pollutant Source Control

(1 of 1 Point)

Intent – Minimize exposure of building occupants to potentially hazardous particulates and chemical pollutants.

Execution – Vestibules are used at all the main entrances to Hunter's Point South School which have dimensions greater than six feet in the direction of travel. Fume hoods are used to control any pollutant sources created in the laboratories.

EQ Credit 6.1: Controllability of Systems: Lighting

(1 of 1 Point)

Intent – Provide a high level of lighting system control by individual occupants or by specific groups in multi-occupant spaces (i.e. classrooms or conference areas) to promote the productivity, comfort and well-being of building occupants.

Britt Kern

Hunter's Point South Intermediate School & High School

Execution – Over 90% of the lights in Hunter's Point South School are controllable by building

occupants. Thereby this credit is attainable.

EQ Credit 6.2: Controllability of Systems: Thermal Comfort

(1 of 1 Point)

Intent – Provide a high level of thermal comfort system control by individual occupants or by

specific groups in multi-occupant spaces (i.e. classrooms or conference areas) to promote the

productivity, comfort and well-being of building occupants.

Execution - Operable windows and accessible thermostats are provided in the majority of

rooms. VAV boxes specifically serve one space each for better comfort control.

EQ Credit 7.1: Thermal Comfort: Design

(1 of 1 Point)

Intent – Provide a comfortable thermal environment that supports the productivity and well-

being of building occupants.

Execution - The HVAC systems and building envelope of Hunter's Point South Building were

designed to meet ASHRAE Standard 55. This credit shall be earned.

EQ Credit 7.2: Thermal Comfort: Verification

(0 of 1 Point)

Intent – Provide for the assessment of building thermal comfort over time.

Execution – Verification of thermal comfort is not needed in the NYC Green School Guide.

Therefore there this credit will not be obtained.

EQ Credit 8.1: Daylight & Views: Daylight 75% of Spaces

(1 of 1 Point)

Intent – Provide for the building occupants a connection between indoor spaces and the outdoors through the introduction of daylight and views into the regularly occupied areas of the building.

Execution – Through the calculation of Option 1, Hunter's Point South School will obtain this credit.

EQ Credit 8.2: Daylight & Views: Daylight 90% of Spaces

(1 of 1 Point)

Intent – Provide for the building occupants a connection between indoor spaces and the outdoors through the introduction of daylight and views into the regularly occupied areas of the building.

Execution – The majority of rooms in Hunter's Point South School are located along the exterior and thus have direct views outside. The rooms congregated in the middle of the school that don't have views are generally unoccupied rooms or rooms of short occupancy duration. Because of this, Hunter's Point South School has views in at least 90% of all regularly occupied spaces.

Overall Mechanical System Evaluation

The mechanical system for Hunter's Point South School meets the requirements outlined for design. The total mechanical system cost was \$7,750,000 which is approximately \$50.40 per square foot. Two of the biggest cost factors were the ductwork and custom made air handling units. Operating the building would cost \$371,943 a year or \$2.43 a square foot. Space was saved by placing the mechanical equipment on the roof but extensive ductwork was still required. A total of 1,681 square feet were lost to the mechanical system, the most of it being shafts for ducting from floor to floor.

The variable and constant flow AHU's meet the ventilation requirements outlined in ASHRAE Standard 62.1. The VAV terminal boxes further help to save energy costs, however at times of full turndown ventilation requirements may not be met. Since the ductwork and AHU's consume such a huge percent of the total mechanical system cost, perhaps a hydronic system with a dedicated outside air system could be used instead. This would use smaller ductwork and ventilation requirements would be more easily met. In using smaller ducts, floor area would be saved because the vertical shafts would not need to be as big.

The evaluation for maintenance for the mechanical systems is mixed. Huge clearances are given around the AHU's as well as access doors. Chillers are easily reachable on the roof. All proponents of the system are very accessible but no elevator goes up to the mechanical penthouse or roof. Replacement of larger parts would be difficult. The only way to access the chillers, AHU's, boilers, and generator is by using the stairs.

Fume hoods do an excellent job to remove hazardous chemicals from the laboratories and science classrooms. However this energy is wasted. No heat recovery is used in Hunter's Point South School for any of the exhaust fans. Recovering exhausted heat can help save building energy costs.

Moving forward, the mechanical system designed for Hunter's Point South School is very good but not flawless. Heat recovery is not present at all. The use of roof space for mechanical equipment saves usable floor space but the use of a 100% outside air system with hydronic heating and cooling could potentially save more floor space. From reviewing the construction site, a large body of water is nearby but it is probably not close enough to be used effectively for geothermal. Looking forward there are a few promising leads to improve the efficiency of the mechanical systems of Hunter's Point South School.

Proposal

Alternatives Considered

Several alternatives were considered to improve the efficiency and operating costs of the mechanical systems in place in Hunter's Point South School. These alternatives are described more in depth below.

Geothermal Heat Pumps

Geothermal heat pumps use the Earth's constant temperature for heating or cooling purposes. No combustion is needed and it has a relatively long life. Geothermal is an excellent design idea and once the initial costs are paid off, the costs for heating or cooling is a fraction of the original. The implementation of a geothermal heat pump was a favored topic to use but due to the nature of the site it is not feasible.

Geothermal closed-loop systems require extensive excavating for the piping to be placed. Excavating for Hunter's Point South School is very costly and the footprint of the building is not big enough to support the number of wells needed. Also, since Hunter's Point South School is located in the city, sewage lines and electrical wires could run right under the building. Openloop systems could not be used either because no body of water is located close enough to the schoolhouse.

Reheat Recovery on Fume Hoods

No heat recovery has been used for the fume hoods. Using wrap around heat pipes and using the exhaust to precondition the supply air would be a quick fix and simple solution. This idea was highly considered but ultimately due to the sporadic use of the fume hoods and fear of corrosive properties from the chemicals exhausted, it was abandoned.

<u>Chilled Beam System</u>

Chilled beam systems are an up and coming technology in the U.S. They can be used for both heating and cooling purposes and are traditionally coupled with dedicated outdoor air systems to supply a reduced amount of air to spaces. Chilled beams have the potential to have a huge cost savings when combined with dedicated outdoor air systems. However, the use of chilled beam systems is very limited in the U.S. Owners are skeptical if they run properly. Since chilled beam systems have a cooling coil in the unit, people worry about water condensing on the coil and it "raining" in the space. When properly designed this should not happen but still many owners are skeptical in the U.S. so topic has been avoided.

Cooling Tower

The two chillers located on the roof of Hunter's Point South School are air-cooled. A possible investigation into whether water cooled chillers would be more efficient would be a great thesis topic. This would include designing a cooling tower and comparing the savings on compressor energy while having to pay for makeup water versus the current air-cooled chillers. This idea alone would not be enough and seems to be a stand-alone consideration. This was considered but a more encompassing idea was preferred.

Mechanical Proposal

After looking through all the alternatives and some new ideas, the following changes were proposed to the design of Hunter's Point South School.

Dedicated Outdoor Air System (DOAS)

A dedicated outdoor air system will be used for ventilation air instead of AHU's 1, 2, and 3. To receive a point in the New York City Green Schools Guide, Hunter's Point South should supply above 30% outside air according to ASHRAE Standard 62.1. The CAV systems do meet this requirement but the existing VAV system is problematic at times when the VAV boxes are fully turned down.

The use of a DOAS is a simple solution to meet the ventilation needs. The air supplied by the DOAS will be constant and sized to 30% of the minimum ventilation standard in ASHRAE Std. 62.1. This will insure that Hunter's Point South will receive the Q1.1R Minimum IAQ Performance/Increased Ventilation credit.

Another goal of using a DOAS, is that it will reduce the amount of ductwork needed in the building. The ductwork was the biggest mechanical cost (excluding emergency generator/fuel oil) and can be seen in Table 18 on page 17. Less ductwork will save on costs and should increase the usable floor space by restricting the size of the floor to floor duct chases and runs.

The AHU's currently used by Hunter's Point South School are the third biggest cost (seen above in Table 18). A single DOAS can potentially replace AHU's 1, 2, and 3. This will result in a smaller system and more roof space. It will also lower the cost of the system and make the operating system much simpler. Since all return air from spaces will be exhausted, the use of a total energy recovery wheel will be beneficial so energy is not "thrown away".

Total Energy Recovery Wheel

ASHRAE Standard 90.1 requires any mechanical system that uses 100% outside air to have some form of energy recovery. Currently, no heat recovery is used in the mechanical design for Hunter's Point South School. A total energy recovery wheel would be able to transfer sensible and latent properties from the exhausted air of the DOAS to the incoming outdoor air. This will bring the outside air closer to the supply air conditions and would greatly lower energy costs. The dehumidification wrap around coils used in the original VAV AHU's would not be needed in the DOAS because of the wheel. A purge section in the wheels would help ensure no cross contamination from the exhaust to the incoming outdoor air. In case there ever is a discharge of chemicals in a lab room to the regular exhaust, this purge section can transfer energy to the incoming outdoor air without spreading contaminants. Below, Figure 10 shows a how a purge section is used with a wheel.

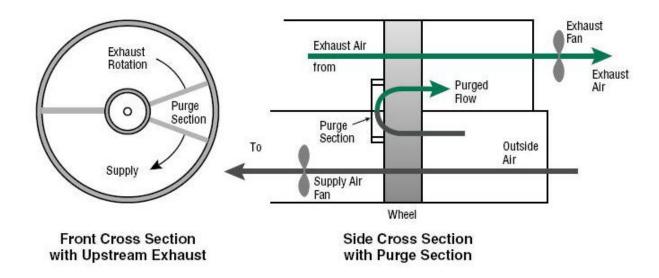


Figure 10 –Total Energy Recovery Wheel with Purge Section

Fan-Powered Induction Units (FPIU)

The classrooms, offices, lab rooms, corridors, and non-public spaces are served by the VAV AHU's 1, 2, and 3 which have VAV boxes as the terminal units. These spaces require the most cost to condition. VAV's systems are well suited to help lower energy costs but as explained before, they are problematic in reaching the minimum ventilation requirements when fully turned down. Using fan-powered induction units would work well in place of the VAV boxes. FPIU's have a dedicated outdoor air supply so minimum ventilation can always be met. Since only minimum outside air is ducted to the rooms, duct sizes will be dramatically reduced. Additional air is recirculated from the plenum and mixed with the outside air. The FPIU's allow for easy control of temperatures in spaces since both a cooling coil and heating coil can be placed in the unit. This increases the comfort level for occupants in space and allows for turn down when the space isn't occupied. Each different space is more easily controlled to exactly the thermal needs it has. It is important to mention that the FPIU's have drip pans under the cooling coils incase air would condense. This is will prevent the internal "rain" that makes owner's wary of chilled beams. Also, the chilled water supplied to these cooling coils will be of a much higher temperature so no condensing will occur.

Though duct sizes may be reduced, piping will have to be provided to the FPIU's for cooling and heating coils. This will increase piping costs but hopefully not enough to overcome the savings from the smaller ducts. Using fan-powered induction units will hopefully help save on energy costs while allowing for an increase in thermal comfort. Below in Figure 11 is a picture of the Krueger KLPS-D FPIU (the one chosen to be used). Note that an optional MERV 8 Filter can be put on the recirculated plenum air. Adding this filter, will allow for the addition of a LEED point.

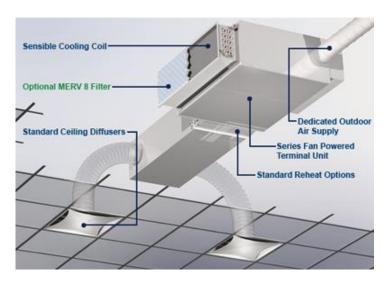
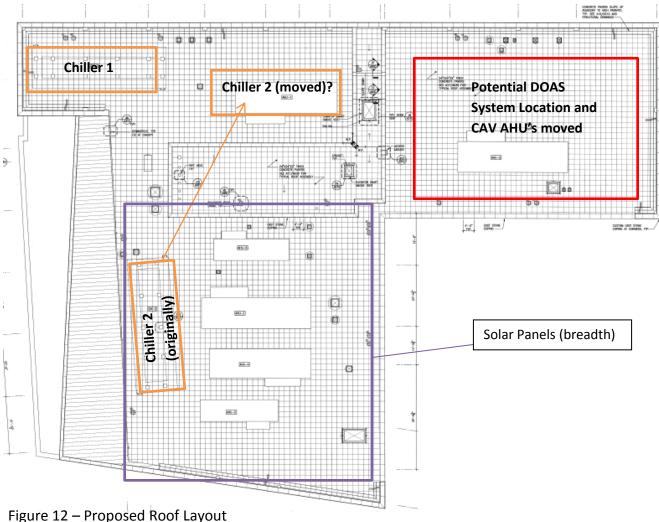


Figure 11 - Fan-Powered Induction Unit

Chilled Water System

Since fan powered induction units will be used as the new terminal device, the sensible loads for each space will be met at the zone through recirculated plenum air. The plenum air will run through a cooling coil above the served spaces. A new chilled water system will have to be designed to supply chilled water at a high enough temperature so that air will not condense on the cooling coils and cause mold or water damage above the served spaces. A drip pan is included in the FPIU's but this should be used as a last line of defense. A chiller system supplying two different temperature chilled waters should suffice, meaning atleast two different chillers with two different chilled water loops. The AHU's and DOAS will be supplied with the current 44°F propylene glycol – water mixture while a new chiller will supply the FPIU's cooling coils with a higher temperature propylene glycol – water mixture, which is high enough to ensure no condensation.


Benefits of the Proposed Design

Indoor air quality should be greatly increased through the proposed mechanical redesign. The correct amount of outside air used in the spaces will always be met and the thermal comfort of the rooms shall be easier to control. Free up of the rooftop space will allow for an area for photovoltaic solar panels to be installed. Finally the integration of a total energy recovery wheel and FPIU's should increase efficiency and lower economic costs.

Breadth Topics

Solar Photovoltaic Panels (Electrical Breadth)

Through all the proposed mechanical changes, extra space will be created on the roof. Figure 12 on the next page shows the proposed open area. This open area on the roof is south facing, making it a great source for solar power generation. A parapet currently exists all along the roof. The parapet can be reduced in size along the southern walls to allow for sun light to reach the panels. Though the space is not enough to generate a large chunk of Hunter's Point South School's electricity needs, solar photovoltaic panels can cut cost and have a reasonable payback time with the current rebates in New York. In the long run, the solar panels will offset enough electricity costs to make money for the school. Energy generated from these panels is also clean and will not pollute the environment. This will further add to the schools sustainable footprint. The design and integration of tying a solar system into the existing electrical system of Hunter's Point South School shall be included in this breadth. The sizing of the inverter(s) and breaker(s) will be calculated as well as the feeders. An economic analysis on the payback period and energy generated by the panels shall also be performed.

Analysis of the Roof System (Structural Breadth)

With all the moving around of AHU's, chillers, and adding solar photovoltaic panels, an analysis of the roof of Hunter's Point South School is in order. Whenever solar photovoltaic panels are installed on a roof, a structural analysis must first be performed. The analysis set up will test whether the existing roof system for the schoolhouse can support all these changes. The roof deck, beams, girders, and columns that have increased loads on them due to the adding/moving around of equipment will be tested. Calculations for strength and deflection will be performed by hand and if the structure fails, a new one that can hold the loads will be specified.

MAE Course Relation

Since the terminal units are being changed, it is necessary to make sure that the air in spaces is still well circulated. With the information gained in AE 559 Computational Fluid Dynamics, a study may be conducted into how well air is supplied and mixed within the rooms through the FPIU's. This shall show if any dead zones/drafts may exist and give a better picture of how thermally comfortable the spaces will be to occupants. The air distribution and circulation of the new fan powered induction units will be compared against the old VAV box systems.

Tools for Analysis

Below is a list of a few programs that shall be used for the integration of the above proposed designs.

Trane TRACE 700

This program will be used to run load calculations on spaces so the FPIU's can be sized properly as well as the DOAS system. An energy analysis will also be performed using TRACE to see the feasibility and life cycle costs of these systems.

Engineering Equation Solver (EES)

EES is an advanced equation solving software. Coupled with excel, problems not easily solved by hand can be made much quicker.

<u>AutoCAD</u>

AutoCAD can be used to take measurements and areas for the different rooms. It is also an excellent tool to use to draw diagrams for the systems and outline proposed piping/duct layouts.

Codes and Standards

Codes and standards for design as well as safe practice will need to be investigated throughout the redesign work. Compliance with the 2007 New York State Mechanical Code, New York City Green Schools Guide, and ASHRAE Standards 62.1 and 90.1 will be checked periodically.

Mechanical Depth

DOAS Sizing

The first step in sizing the DOAS units was to calculate the amount of ventilation air needed for each space supplied by the DOAS. Since Hunter's Point South School is located in New York City, it must follow the New York City Mechanical Code. The school also abides by the guidelines set up in the New York City Green Schools Guide. The Q1.1R Minimum IAQ Performance/Increased Ventilation point that Hunter's Point South is striving to receive requires above 30% minimum ventilation as calculated in ASHRAE Standard 62.1 Section 6. Therefore, the amount of outside air needed to be supplied to each room is determined by the highest constraint between the NYC Mechanical Code, NYC Green Schools Guide, and the latent load for the space. The latent load for each space was determined using the equation:

$$Q_{latent} = 0.69 \times CFM \times \Delta w$$

Q_{latent}: The latent load in the space (Btu/hr).

CFM: The outside air (cubic feet per minute) supplied to the room. Only the ventilation air to the room is used here because the DOAS does the entire latent load for each space served.

Δw: The difference in the room humidity ratio to the supply humidity ratio (grains of moisture per pound of dry air).

The room set point for Hunter's Point South School is 75°F and 50% relative humidity. This gives a value of 65 grains/lb in each room. Outside air with a lower grains/lb will be needed to be supplied to each room to offset the latent load generated by the occupants. A supply grains/lb of 45 was chosen for the outside air. This would generate a Δw of 20. The latent load given off by occupants was found in the 2009 ASHRAE Fundamentals Handbook on page 18.4. 250 and 200 Btu/hr was used for walking and sitting occupants, respectively. No appliances in any of the spaces served by the DOAS gave off a latent load (so the latent load was only determined by occupants). Also, since the building is positively pressurized it was assumed no outside air leaks in which would further complicate the latent load calculations. Rearranging the above equation to solve for CFM gives:

$$CFM = Q_{latent} \div (0.69 \times \Delta w)$$

The calculation for latent load can be seen in Appendix D. The calculation for minimum ventilation air for the New York State Mechanical Code and for 30% above ASHRAE Standard 62.1 can be seen in Appendix E and C, respectively. Once all the ventilation needs were found,

the largest was chosen as the amount of outside supply air to the space. This can be seen in Appendix F.

This led to a total outside air supply of 36,865 CFM for the DOAS. This is a 23% reduction in ventilation air and 58% reduction in air supplied to the terminal units supplying the rooms from the rooftop units.

The next process was determining the amount of exhaust air needed by the DOAS. Less air is needed to be exhaust than supplied to allow for building pressurization and exfiltration to occur. Since the building will be positively pressurized to the outside, approximately 0.025 CFM/SF-façade will be lost to exfiltration (so you can exhaust this much less). The locker rooms and bathrooms have their own dedicated exhaust system (8,410 CFM). This CFM exhausted by the dedicated exhaust system can be subtracted from the amount of CFM needed to be exhausted by the DOAS. The total amount of air exhausted will then be:

$$36,865 \text{ CFM} - \left(0.025 \frac{\text{CFM}}{\text{SF Facade}} \times 70,515 \text{ SF Facade}\right) - 8,410 \text{ CFM}$$

= 26,292 CFM

This means that the DOAS will have to exhaust 26,292 CFM to keep building pressurization. Art classrooms require 0.7 cfm/sf exhaust according to Table 6-4 in ASHRAE Standard 62.1. This means that 105 Is Art and 552 Hs Art rooms will need to exhaust 762 and 736 cfm, respectively. Since the supply outside air cfm is much greater than these exhaust needs, exhausting the correct amount of air will not be a problem. Other rooms with minimum exhaust rates are shown below in Table 27.

	Minimum Exhaust
Room Type	Rates (cfm/sf)
Art Classrooms	0.70
Copy/Printing Rooms	0.50
Educational Science	
Laboratories	1.00
Janitor Closets	1.00
Dressing Rooms	0.25
Locker Rooms	0.50
Toilets - public	50 cfm/toilet

Table 27 – Minimum Exhaust Rates

The external static pressure (esp) for the fan in the DOAS had to be calculated next. Early in the process of laying out the new duct runs, it was determined that it would be better to use two DOAS rather than one. This would allow for shorter duct runs and allow the system to run more smoothly (since you don't have all the rooms hooked up to one unit). DOAS 1 would be placed in AHU 3's current position and DOAS 2 would be placed in AHU 1's spot. This new arrangement can be seen in Figure 13 below. Note also, this means that the east roof will now be used as the area for solar panel installation although some exhaust runs may need to be moved. Table 28 below shows the restrictions on air velocity through the ducts based on noise criteria. Ducts were sized using these requirements along with a ductulator (duct calculator).

Run Type	Air Velocity (fpm)	Design RC (NC)
Riser	1700	25
Main	1500	25
Branch	1000	35
After FPIU	500	25
Diffuser	350	25
Return	425	25

Table 28 – FPM for Duct Runs

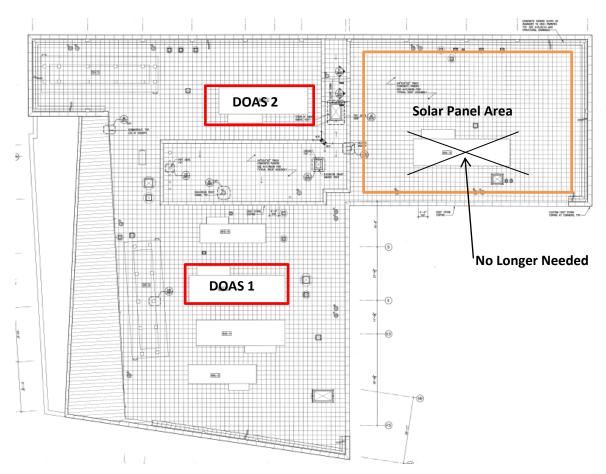


Figure 13 – DOAS 1 and DOAS 2 Positioning

The new Air Flow Diagrams can be seen below in Figure 14 for DOAS 1 and Figure 15 for DOAS 2.

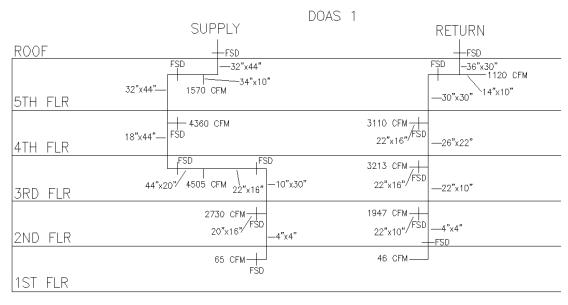


Figure 14 – Air Flow Diagram DOAS 1

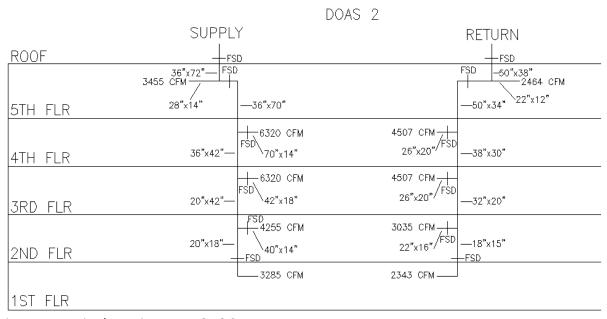


Figure 15 – Air Flow Diagram DOAS 2

The complete new duct layouts can be seen in Appendix G. The ducts are actually oversized due to an early error in oversizing the ventilation air needed for the two DOAS's. An oversizing of the ducts will cause the air to flow smoother through the ducts causing less noise so this early error is not a problem. Note that FSD refers to fire smoke damper in the layouts.

The fan external static pressure (esp) could then be calculated once all the new ducts had been laid out and sized. The fan esp is the pressure drop along the longest duct run from the discharge of the DOAS to the FPIU serving the room (no internal drops from the DOAS). The reason the esp is not calculated to the diffuser in this case is because the FPIU has a fan in it which can raise the pressure of the air to the space. The longest run for DOAS 1 was from the supply fan discharge to the library on the second floor. The longest run for DOAS 2 was from the supply fan discharge to the Vault W. Anteroom on the first floor. The return fans' longest run for both DOAS were from a return on the first floor up through the plenum to the return fan. Pressure drop in the duct runs occur due to friction losses and dynamic losses. The friction losses are the pressure drop associated with friction between the air and the duct. Friction loss is calculated by:

$$\Delta P_f$$
 = Length of Run × Friction Loss ÷ 100

ΔP_f: Friction Loss (inches water gauge)

Length of Run: Distance of the duct run (feet)

Friction Loss: Pressure drop in inches water gauge per 100 feet of duct run

The dynamic losses are caused by bends, turns, and other impediments along the run. Dynamic loses are calculated by:

$$\Delta P_i = C \times P_v$$

 ΔP_i : Dynamic Loss (inches water gauge)

C: Local loss coefficient (dimensionless)

P_v: Velocity pressure (inches water gauge)

The friction loss (inches water gauge per 100 feet of run) and velocity pressure were found using a ductulator. The local loss coefficient C was calculated using the charts at the end of chapter 21 in the 2009 ASHRAE Handbook of Fundamentals and interpolation/extrapolation. A list of all the pressure drops that occurred in the runs can be seen in Appendices H through K. Below in Table 29 is the esp calculated for each of the DOAS's supply and return fans.

	Fan External Static Pressure				
	(inches water gauge)				
	DOAS 1	DOAS 2			
Supply Fan	2.77	1.84			
Return Fan	1.50	1.18			

Table 29 - ESP Fans

With this last piece of information, the data was given to a manufacture at Havtech to size two DOAS units that could meet the following criteria seen below in Table 30.

	DOAS 1	DOAS 2	
Supply Air (cfm):	13230	23635	
Return Air (cfm):	9436	16856	
OA design Conditions:			
Winter:	12.8 DB, -5.	4 dew point	
Summer:	89.7 DB, 72	2 dew point	
Supply air conditions:			
Winter:	55 DB, 48	dew point	
Summer:	45 DB, dew point 45		
Room Setpoints:			
Winter:	72 DB,	30% rh	
Summer:	75 DB,	50% rh	
Supply Fan E.S.P.:	2.77	1.84	
Return Fan E.S.P.:	1.5	1.18	
Chilled Water Entering (F):	44.4	44.4	
Chilled Water Leaving (F):	54	54	
Hot Water Entering (F):	140	140	
Hot Water Leaving (F):	120	120	
Units outside:	Yes	Yes	

Table 30 – DOAS Information

The specifications for the two DOAS units chosen can be seen in Appendices L and N as well as their physical dimensions in Appendices M and O. In this analysis, dehumidification wrap around heat pipes were considered but were advised against according to the manufacturer. A total energy wheel was chosen for both DOAS instead. More on this feature can be seen in the next section. An important point to notice is that both the new systems weigh less than the current systems that sit in their place. This is very helpful because it means a structural analysis will not be needed for these two units.

Total Energy Recovery Wheel

Once the conditions for the two DOAS units were found, the energy recovery wheel could be chosen. An energy recovery system of some type is required for air handlers using 100% outside air as supply. The energy recovery wheel was not only given consideration because of this guideline but also because the exhaust airflow has a lot of useful energy that can be utilized. Currently, Hunter's Point South School has no energy recovery devices for the air handlers. This is a bit strange considering it must abide by the New York City Green Schools Guide. An energy recovery wheel would be a great way to make the building more efficient because it could then recover both sensible and latent energy from the exhaust air stream. Recovering energy for both sensible and latent will allow for maximum savings. The wheel was placed in the typical spot for a preheat coil since in the winter it can do the job of the coil. It is usually a good idea to include a preheat coil even though the wheel will heat the air above the dew point of the cooling coil because the wheel could fail. For this report it was assumed the wheel would not break down. Also, adding a preheat coil with the wheel would create too great of a static pressure drop for the fan.

Below in Figure 16 is the energy recovery wheel in cooling mode at worst case scenario in the summer.

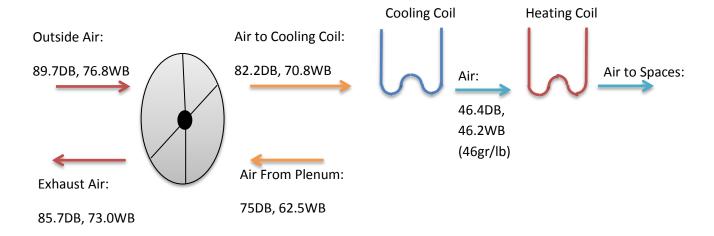


Figure 16 – Energy Recovery Wheel Cooling Mode

The cooling coil specified by the manufacturer can't actually get the supply air down to the correct gr/lb of 45 (can get down to roughly 46 gr/lb). This means that for a few days a year the space humidity may be a bit higher than the set point but it should still fall within the thermal comfort level specified in ASHRAE Std. 55. The other days of the year for cooling the gr/lb of the supply air will be 45 as designed. Note that an added heating coil is downstream of the

cooling coil for temperature reset. Figure 17 is the energy recovery wheel in heating mode at worst case scenario in the winter.

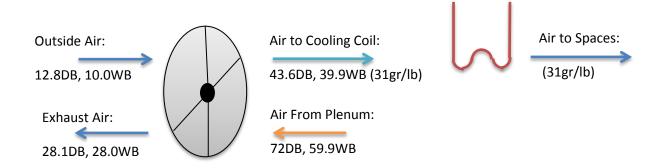


Figure 17 – Energy Recovery Wheel Heating Mode

The total energy recovery wheel does the majority of the heating of the air in the winter. The cooling coil is neglected from the above diagram because it is not needed since the latent load is met by the moisture of the outside air. In this scenario the heating coil will be used to bump up the supply air temperature to the lowest temperature required by the served spaces.

The effectiveness of the total energy recovery wheels can be seen below in Table 31 for the worst case summer and winter design days.

	Summer Worst Case				Winter Worst Case				
				Total Energy				Total Energy	
	Latent	Sensible	Total	Recovered	Latent	Sensible	Total	Recovered	
	Effectiveness	Effectivness	Effectiveness	(Btu/hr)	Effectiveness	Effectivness	Effectiveness	(Btu/hr)	
DOAS 1	68.62%	75.30%	70.75%	345,881	70.81%	77.20%	74.55%	675,484	
DOAS 2	68.67%	75.34%	70.80%	618,195	70.86%	77.24%	74.59%	1,207,247	
			Total:	964,076	·		Total:	1,882,731	

Table 31 – Effectiveness of Wheel

The biggest savings for the total energy recovery wheel is from heating. The wheels save a total of 14,817 therms of natural gas a year. This equates to an energy savings of \$22,848. This is due to the fact that the wheels can do the complete heating of the OA during the winter. Electricity usage also decreases by 17,159 kWh per year, a savings of \$3,260 a year. The wheel requires electricity to run but saves enough energy by displacing the energy needed to run pumps to serve the heating coils a typical AHU or DOAS would have. This gives a total savings of \$26,108 a year for using total energy recovery wheels. The wheels cost (including labor/installation) \$23,875 and \$42,652, respectively for DOAS 1 and DOAS 2.

Fan Powered Induction Units

The chilled water supplied to the FPIU's cooling coils must be warm enough so that the return plenum air does not condense on them. The cooling coil's temperature can be assumed to be the same as the chilled propylene-glycol water mixture running through it. The summer and winter air conditions are 75°F and 72°F, respectively with 50% relative humidity. Since relative humidity readings can fluctuate +/- 5%, the worst case scenario will be plenum air in the summer. This worst case condition can have the air be 75°F DB with 55% relative humidity. The dew point for air at this condition can be seen below in Figure 18.

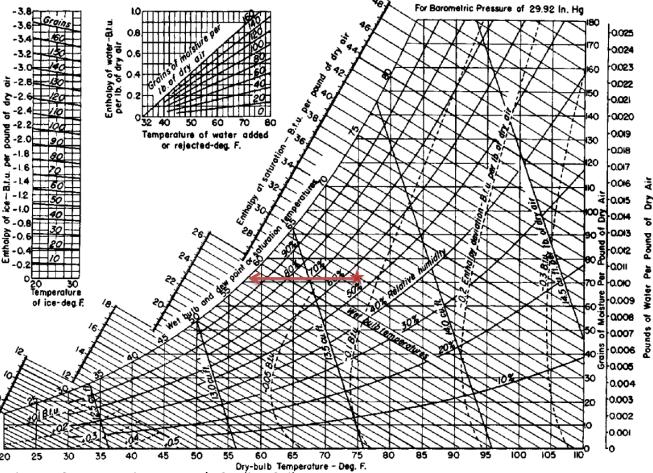


Figure 18 - Dew Point on FPIU's Cooling Coil

The star in the figure shows the 75°F DB with 55% relative humidity air. For this condition, the dew point of the air will be slightly lower that 58°F. This means that the CHW supply must not be any lower than 58°F or else the air may condense on the cooling coil. Since this is worst case scenario and the supplied CHW will heat up a bit due to friction, 58°F CHW supply from the chiller should prevent condensing on the coils.

Once the supply chilled water temperature was chosen, the cooling coils for each FPIU could be sized. The room peak sensible cooling loads were taken from TRACE. When the max cooling occurs in a room, the DOAS will be supply the room with 47°F air (46°F air comes off the coil so add one degree for friction). This primary air in conjunction with the recirculated cooled plenum air will take care of the room's sensible cooling. First the amount of cooling the primary air does for the space was calculated using:

$$Q_{\text{sensible}} = 1.1 \times CFM \times \Delta T$$

Q_{senible}: Cooling applied to space (Btu/hr)

CFM: Supply primary air to space

 ΔT : Temperature difference of room and supply air. The max cooling will occur in the summer when the room set point is 75°F and the supply air is 47°F. This gives a ΔT equal to 28°F.

The excess cooling needed for each room and the cooling coil sizing can be seen in Appendix P. For spaces were a negative excess cooling value is shown, means that the space is overcooled. Therefore no cooling coil is needed. In fact, if a space is overcooled than a heating coil must be used. Since the fin tube radiators are being replaced by heating coils in the FPIU's, these heating coils can be used for this purpose.

Some rooms require further cooling than just the primary air. The coiling coil sizing for each room was based on the manufacture's specifications in Appendix Q (cooling coil size) for 75°F plenum air and 58°F entering 30% propylene glycol – water mixture. The coil sizing had to take into account the max deliverable fan CFM to the space as well as the primary air CFM. This can be seen in Table 32 below or Appendix R.

	Max Primary	Max Fan	[Dimension	s
Unit Size	CFM	CFM	L	W	Н
3	920	1100	40"	26"	11"
5	1430	1660	46"	36"	17"

Table 32 - FPIU's Fan CFM

Some spaces were able to share FPIU units. These spaces needed the same ventilation requirements as well as similar cooling needs. In general, each classroom received its own FPIU (sometimes two if the cooling load was too great for one). Spaces that were able to share FPIU's were generally very small interior offices (ex. 308, 308A, and 308B) or small offices along the same exterior wall (ex. 551A and 551B).

FPIU's have the ability to include heating coils. Since the fin tube radiators will be removed for the rooms, heating coils in the FPIU's will be used to heat the spaces. The calculation for the heating coil sizes can be seen in Appendix S. In sizing the heating coils, both the room loses (due to walls, windows, etc.) and the cooling done by the primary air flow to the room had to be accounted for. Appendix T has the manufacturer's heating coil size specifications used in this analysis.

FPIU's supply a constant volume of air to the room. The heating and cooling coils both require different amounts of air to generate their capacity. The FPIU will use the bigger air volume so the full load for cooling or heating can both be provided. The FPIU could switch between flows for the two scenarios but this would cause added noise and is not ideal.

Below are the price calculations for the FPIU's in Table 33. The total install cost including labor and a location factor was found to be \$241,809. This is an increase from the original design cost of the VAV boxes (which can be seen in the results section).

			Heating			
Number of		Cooling	Coil			Total Cost of
FPIU's	Unit Size	Coil Rows	Rows	Co	st per Unit	Units
22	3	0	1	\$	738.00	\$ 16,236.00
16	3	0	2	\$	970.00	\$ 15,520.00
33	3	2	1	\$	1,027.00	\$ 33,891.00
7	3	2	2	\$	1,185.00	\$ 8,295.00
7	3	4	1	\$	1,375.00	\$ 9,625.00
5	3	4	2	\$	1,415.00	\$ 7,075.00
12	5	0	2	\$	1,090.00	\$ 13,080.00
14	5	2	2	\$	1,355.00	\$ 18,970.00
2	5	4	1	\$	1,360.00	\$ 2,720.00
13	5	4	2	\$	1,410.00	\$ 18,330.00
2	5	6	1	\$	1,655.00	\$ 3,310.00
11	5	6	2	\$	1,700.00	\$ 18,700.00
					Total =	\$133,996.00
		Total (wit	h installati	on/	labor/LF)=	\$241,809.18

Table 33 – FPIU's Cost

Once all the FPIU's were sized and the DOAS units chosen, the new alternate ductwork could be finalized. The new duct work was calculated to be \$227,498. This was done by finding the pounds of steel for the new duct work and using the 2012 RS Means Mechanical Data. A sample of this calculation can be seen in Appendix U and explained more below.

The galvanized rectangular steel ducts must be in accordance with SMACNA HVAC Duct Construction Standards. For simplification, it was assumed that all ductwork was of 26 gauge (both rectangular and circular ducts). The duct cost estimation was done using the RS Means Mechanical Cost Data 2012. Since the cost is given in pounds for galvanized rectangular ductwork in the RS Means, the weight per linear foot of ductwork was first calculated. 26 gauge duct weighs 0.906 pounds per square foot. An example of calculating the pounds per foot of duct can be seen below for a 32"x44" duct.

Perimeter =
$$2 \times 32 + 2 \times 44 = 152$$
 inches

$$\frac{lb}{ft}$$
 = 152 inches × 0.906 $\frac{lb}{sf}$ ÷ 12 (convert in to ft) = 11.5 lb/ft

A factor for 30% fittings, elevated installation (10 to 15 feet), and medium pressure duct installation was included in the labor cost. The total cost including overhead and profit was then multiplied by the location factor to give a total of \$10.89 per lb of rectangular duct. Cost data for circular galvanized ductwork was found directly in the RS Means. It was estimated that there was a cost of \$1.00 per sf of insulation on the supply duct.

The circular ducts are shown as single line diagrams as to not clutter the drawings any more. The last 3 feet of the circular duct runs to each diffuser are flexible duct, as specified in the specs. Note that the duct work up to the FPIU's is correct; downstream it may be a bit off due to reevaluation of the cfm recirculated by the boxes. However, this should still give a good representation of the design layout.

Secondary Chilled Water Loop Piping

The piping for the secondary chilled water loop (to the FPIU's) had to be laid out too so it could be priced. Since the fin tube radiators in the rooms served by the FPIU's were being replaced by heating coils in the FPIU's, it was assumed that the piping for the FPIU's heating coils would be equal to the piping for the fin tube radiators. Because of this no new added cost would be needed for the heating pipe loop. The primary chilled water loop which runs from the new 225 ton chillers to the AHU's and DOAS units' cooling coils (this sizing will be explained more later) was not resized. If anything, the piping would be reduced and possibly the pump as well because there is less flow rate and the pressure drop across the evaporators are now 15.8 feet opposed to the original chillers' having a pressure drop of 23 feet. It was assumed the price for the primary chilled water loop would not change significantly to alter the cost analysis.

The secondary chilled water loop would have to be priced as well as size a pump for the system. To save time, the supply chilled water piping layout for floor 2 was calculated and multiplied by eleven (one supply and return for each level = 10 and 1 extra since it will be a reverse return system). Floors 3 and 4 have the most FPIU's and piping needs while 5 and 1 have the least. The 2nd floor is a good representation of the average piping needed on each floor. Since the air is being served to the space at 47°F, it was calculated only 178 gpm would need to be circulated to the cooling coils of the FPIU's to meet the further cooling needed (can be seen by adding up the values in Appendix P cooling coils for fpiu's).

In sizing the pipe, the velocity limit was 4 ft/sec for pipes 2 inches or smaller and for pipes over 2 inches a head loss of 4 ft per 100 ft run max was instituted. These limitations are used because the piping will run overhead of occupants and if as long as the layout follows these guidelines, then there should not be a noise problem. Schedule 40 steel piping was used and the friction loss chart for it can be seen on the next page in Figure 19. This chart assumes 60°F water which is very close to the 58°F in this design – so no adjustments were needed.

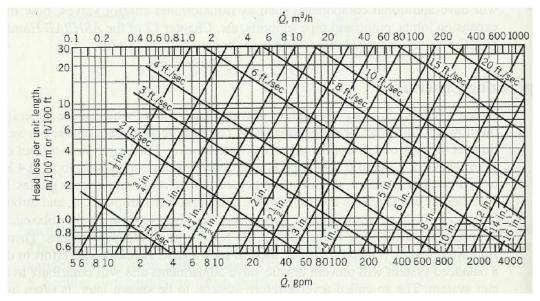


Figure 19 - Friction Loss Chart for Schedule 40 Steel

To further ease sizing the pipes, the chart in Figure x below was used. This is a simplification of Figure 20 above.

Water Pipe Sizing Table

	Maximum GPM							
Pipe Size	Schedule 40 Steel Open Systems	Schedule 40 Steel Closed Systems	Cop Type K, L Copper .8	oper OD				
3/6			.6	1/2				
1/2	Note #1	Note #1	1.3	5/8				
3/4	2.75	4	4	7/8				
1	6	7.5	8	1-1/8				
11/4	11	15	14	1-3/8				
11/2	18	24	20	1-3/8				
2	35	45	42	2-1/8				
21/2	62	70	80	2-5/8				
3	100	130	140	2-1/8				
4	200	270	280	9-1/8				
5	350	475	360	5-1/8				
6	600	800	500	6-1/8				
8	1200	1600						
10	2100	2400						
12	3400	3500						
14	4000	4200						
16	5200	5500						
18	6900	7000						
20	8300	9000						
24	12,500	12,500						

Figure 20 - Pipe Sizing

The piping follows the duct layout of DOAS 2 through the shafts and follows both duct layouts for DOAS 1 and DOAS 2 on each floor. There is amble space since the duct sizes were greatly reduced so there is no trouble running the piping along the ducts. For best control, a reverse-return piping system should be used. Below is a picture of the piping on the second floor in Figure 21. It is shown just to show how little further piping is needed since the primary air does the majority of the cooling. Note how only a few FPIU's need cooling coils. The piping can be seen as a single yellow line. Just the supply piping is shown. For the actual system, return piping would be right next to the supply piping and it would be set up as a reverse-return system so there is a similar pressure drop up to and from each unit due to piping distance.

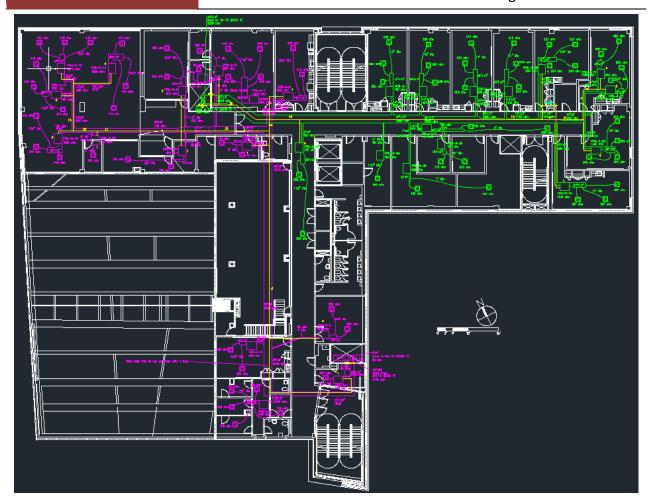


Figure 21 – 2nd Floor Piping

Using the RS Means Mechanical Data for schedule 40 steel and the take offs of the pipe layout on the 2nd floor it was calculated that the supply piping layout for this floor would be \$13,288. Multiplying this number by 11 (since each floor will have a supply and return plus an extra 1 factor since reverse-return systems require more piping) and including the location factor (times 1.289) as well as a factor for fittings/insulation (11% of total) gives a total cost of \$209,130 for the new secondary chilled water loop.

Lastly, a new pump had to be sized for the chilled water loop to the FPIU's cooling coils. The pump distributing hot water to the FPIU's heating coils is assumed to be sufficient because it was sized based on the runs to the fin tube radiators which are a similar distance if not further away than the heating coils in the FPIU's.

The total gpm for the new secondary chilled water loop pump was found by adding up the gpm of each cooling coil of the FPIU's. The total gpm for the secondary chilled water loop is 178 gpm. Similar to solving the external static pressure for the fans in the DOAS units, the total

head of the piping run was solved for based upon the friction loss through valves/bends and friction loss along the runs. The following equations and charts were used in these calculations:

Resistance Coefficient: $K = f_t \times (value \ from \ Figure \ 22)$

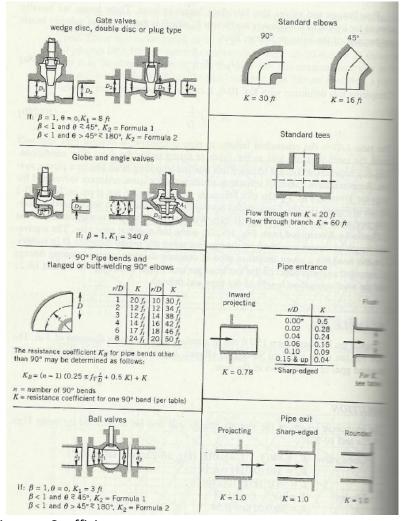


Figure 22 – Resistance Coefficient

Equivalent length of a fitting can then be found using the pipe's diameter, resistance coefficient and Figure 23 below.

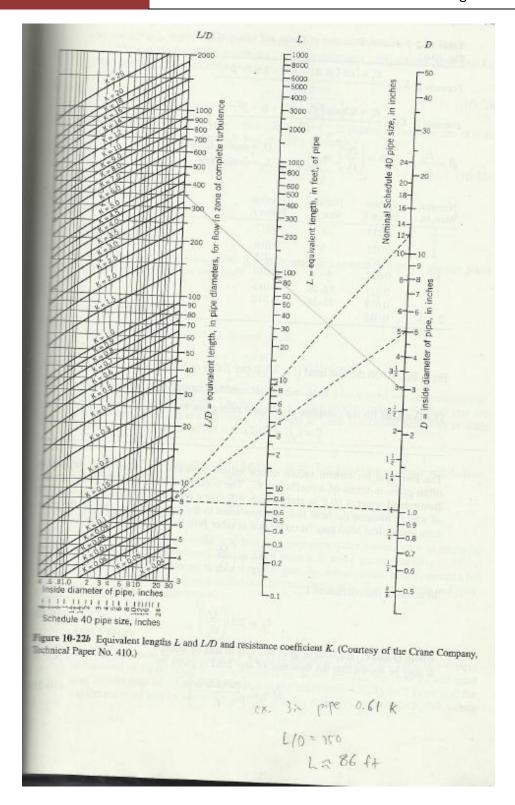


Figure 23 – Equivalent Lengths Fittings

Equivalent Length Total: $L_e = Pipe\ Length\ (ft) + Equive\ Length\ of\ Fitting\ (ft)$

Head Loss for a Run: Loss $(ft) = Equivalent \ Length \ Total \times Lost \ Head \ per \ 100 \ ft \ (\frac{x \ ft}{100 \ ft})$

 f_t (friction factor) was found based on the size of the pipe. Figure 24 below shows the values of f_t for different pipe sizes.

Nominal Size, in.	Friction Factor f_t	Nominal Size, in.	Friction Factor f
$\frac{1}{2}$	0.027	4	0.017
3/4	0.025	5	0.016
i	0.023	6	0.015
$1\frac{1}{4}$	0.022	8-10	0.014
$1\frac{1}{2}$	0.021	12-16	0.013
2	0.019	18-24	0.012
$2\frac{1}{2},3$	0.018		

Figure 24 – Friction Factor

A few assumptions were made as well as the process is explained:

- The total head loss in feet from the pump in the roof mechanical penthouse to the FPIU's cooling coil in room 126C Vault W. Anteroom would be the biggest loss because this is the longest run.
- The total head loss for this run was calculated in Appendix V and found to be 5.52 feet. This value was then multiplied by two since it is a reverse-return system so there will be equal piping length and fittings in both directions. 5.52x 2 = 11.05 ft
- Since the pump is on the roof it will have to make up the elevation difference on the return from the FPIU's cooling coils. The pump is 62 feet above the lowest FPIU (in room 126 Vault W. Anteroom). This 62 feet was then added to the previous head loss. 11.05 + 62 = 73.05 ft
- Next the pressure drop through CH-3's (the chiller for the secondary chilled water loop) evaporator was added. This drop can be seen in the appendices: 73.05 + 29.5 = 102.55 ft
- Lastly a factor of safety of 1.1 was applied. This factor of safety also includes the head loss from the valves and strainers near the pump – since these were neglected. $1.1 \times 102.55 = 113 \text{ ft}$
- The total head loss for the longest run was found to be 113 ft.

A schematic of the longest pipe run as well as the calculations can be seen in Appendix W.

A centrifugal pump was decided upon because it is the most common HVAC pump and it should suite this situation well. The total head loss of the system and gpm are known, 113 ft and 178 gpm. With these two pieces of information a pump could be chosen. The

horsepower for this pump was found using a pump curve. This can be seen in Figure 25 below. The pump will have a motor that operates at 3500 rpm for this system.

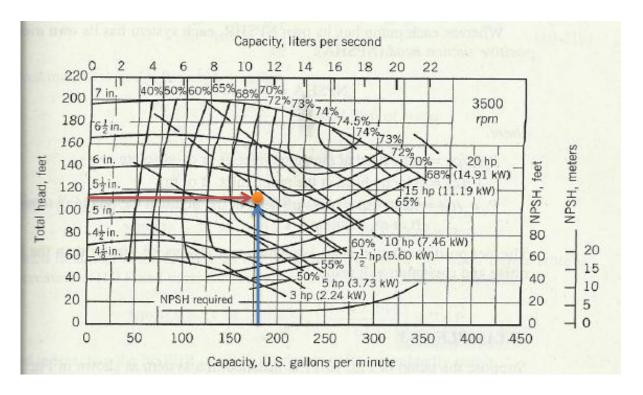


Figure 25 – Pump Curve

From plotting the points, it can be seen that a 7.5 horsepower motor would suffice. All of the characteristics of this pump can be seen in Table 34 below.

Pump Secondary Chilled Water Loop Characteristics							
		Total				Electrical	
		Design				V/Phase/	Impellar
Location	GPM	Head (ft)	Efficiency	HP	RPM	Hertz	(inches)
Mechanical							
Penthouse	178	113	70.5%	7.5	3500	208/3/60	5.75

Table 34 – Pump Characteristics

The last step was to price the pump. The pricing for different pumps was found in the RS Means Mechanical Data book. Appendix X has the steps in choosing the correct price. It was estimated this pump would cost \$5800.50 (including location factor). Two pumps should be bought and placed in parallel to create redundancy.

New Chillers

With the initiation of the FPIU's, the current chillers and chilled water loop must be rethought. The FPIU's have cooling coils that require a supply of chilled water at 58°F. Note that when chilled water is said it is referring to the 30% propylene-glycol water mixture. It would be unrealistic and extremely costly to use 58°F supply chilled water to the chillers. Because of this, two chilled water loops shall be utilized.

The current chilled water system has (2) 276 ton chillers that supply a chilled 30% propyleneglycol water mixture to the AHU's cooling coils. The chillers for the primary chilled water loop will be supplying chilled water to the cooling coils of the DOAS units and AHU's 4 through 6. Since the sensible load for cooling is also being accomplished at the rooms as well as there is less air to condition, the chillers can be downsized. The leaving water temperature from the chillers will remain the same at 44°F so the coils won't need to be changed in the AHU's. The tons of cooling needed for DOAS 1 and DOAS 2 were taken from the specifications, 81.48 and 144.8 tons respectively. These were added to the tons of cooling for AHU's 4 through 6:

The current chillers have a delta T of 9.6 degrees. Using this information it was calculated that the gpm flow would be 1125. The following information was specified to a manufacturer to size a chiller for this design:

type:	air cooled
voltage:	3 phase, 208V, 60Hz
EWT	54 deg F
LWT	44.4 deg F
GPM	1125
Tons:	450

The decision to use an air cooled chillers stems from there being insufficient space on the roof for a cooling tower. The current design of the building also follows this logic.

Two chillers were recommended by the manufacturer to accomplish these parameters. Two 225 ton York model no. YVAA0245CEV17 chillers were chosen. The main characteristics of these two chillers can be seen on the next page.

type:	air cooled
voltage:	3 phase, 208V, 60Hz
EWT	53
LWT	44
GPM	600
Tons:	225

The leaving water temperature dropped a bit as well as the return water temperature. The flow rate increased slightly. This could be bad because the AHU's cooling coils can only handle a certain flow rate. If you assume that the coils in the AHU's are slightly oversized, this minimal extra gpm served to them to meet the cooling load should be fine and won't be too much for the pipes. If the flow was too great for the pipes, than the flow would be restricted and the air wouldn't be able to be cooled to the correct temperature. For this analysis, it is assumed that a factor of safety was used in sizing the cooling coils in the AHU's so the coils can handle this extra flow (it is about a 8.5% increase and will only occur at max cooling which is in the summer when the building will not be occupied at full load). Since this max flow would occur in the summer but the building won't bet fully occupied, it is assumed that the coils will not see this full flow ever. The specifications for these two 225 ton chillers can be seen in Appendix Y.

The primary chilled water loop's piping and control scheme shall remain the same as it is now. The pipes may even be downsized a bit because the new loop needs 1200 gpm as opposed to the 1332 gpm. A schematic of the primary chilled water loop may be seen on the next page in Figure 26. This chilled water loop is a primary-only variable flow design. The flow thorough the chillers' evaporators shall vary with the load. The bypass valve is used to maintain the minimum flow through the chillers' evaporators (when they are on). The flow to the terminal loads vary depending upon the amount of gpm required.

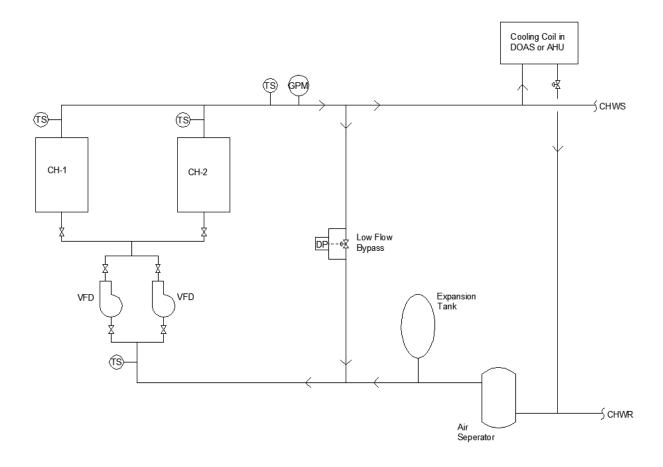


Figure 26 – Primary Chilled Water Loop

The secondary chilled water loop is for supplying the FPIU's cooling coils with 58°F chilled water. The following specifications were found for sizing a chiller for this loop.

type:	air cooled
voltage:	3 phase, 208V, 60Hz
EWT	62
LWT	58
GPM	178
Tons:	32

When these specifications were discussed with the manufacturer some issues arose. The manufacturer had no chillers that could produce a LWT of 58°F but the real problem was the very small delta T of 4°F. A small delta T produces a giant GPM requirement for the pump. Though the chiller may not have to do as much cooling, the extra pumping energy will override this savings. In practice, the ideal delta T for a chiller is 10 to 16 degrees F. This has been found to give the minimal cost between pumping and cooling.

To solve these problems, the secondary chilled water loop will mix water leaving the chiller with the return water of 62°F to get the supply of 58°F chilled water for the FPIU's cooling coils. This appears to be the best option. The tonnage of cooling for the chiller will remain the same and the supply GPM to FPIU's cooling coils will too. A schematic of the secondary chilled water loop can be seen below in Figure 27.

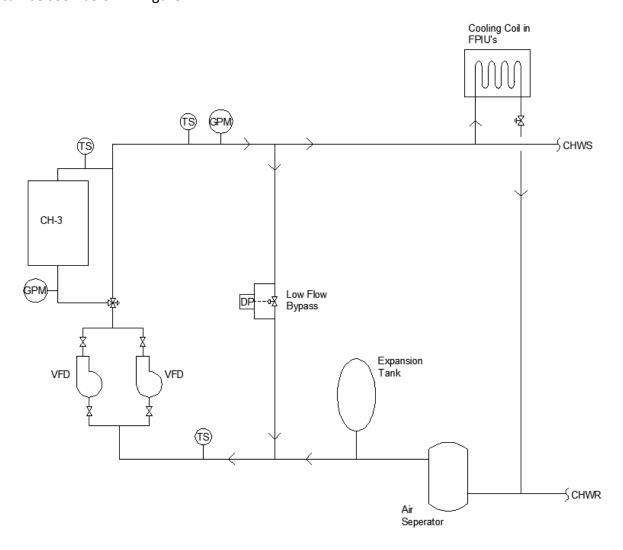
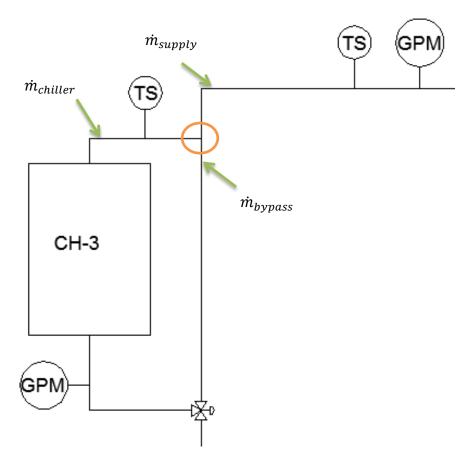



Figure 27 – Secondary Chilled Water Loop

To solve the for the amount of flow through CH-3, a mass and energy balance was done. This balance was done at the intersection point between the outlet of CH-3 with the intersection of the bypassed return water where it is mixed to make the supply chilled water. This point along with the equations can be seen below.

Energy Balance: $\dot{m}_{chiller} \times LWT_{chiller} + \dot{m}_{bypass} \times 62^{\circ}F = \dot{m}_{supply} \times 58^{\circ}F$

Considering the density is close to identical for these different chilled water temperatures (good assumption) gives the equation:

$$GPM_{chiller} \times LWT_{chiller} + GPM_{bypass} \times 62^{\circ}F = 178 \ GPM \times 58^{\circ}F$$

The characteristics for a chiller were then determined using this equation and some background knowledge on the EWT and LWT restrictions. This gave a range for choosing a new chiller. The potential characteristics for CH-3 can be seen in Table 35 on the next page.

	Chiller					
				GPM		
	LWT	EWT		thru	GPM to	GPM
Tons	(deg F)	(deg F)	delta T	Chiller	FPIU's	Bypass
32	40	62	22	35	178	143
32	41	62	21	37	178	141
32	42	62	20	38	178	140
32	43	62	19	40	178	138
32	44	62	18	43	178	135
32	45	62	17	45	178	133
32	46	62	16	48	178	130
32	47	62	15	51	178	127
32	48	62	14	55	178	123
32	49	62	13	59	178	119
32	50	62	12	64	178	114
32	51	62	11	70	178	108
32	52	62	10	77	178	101
32	53	62	9	85	178	93
32	54	62	8	96	178	82

Table 35 – CH-3 Options

In submitting this information to the manufacturer, a YCAL0033EE17 York chiller was chosen as the best candidate. This chiller has the design criteria of the chiller on the last line above (highlighted in red). The specifications for this chiller can be seen in Appendix Z.

Another potential solution would be to put a heat exchanger between the primary loop's return water of 53°F and the secondary loop's return water of 62°F. The mixing of equal parts of these two streams would produce chilled water of 57.5°F, add in heating along the pipes would give you approximately a supply temperature of 58°F to the cooling coils of the FPIU's. This scenario could work but it would create a new delta T on the primary chillers. This would call for resizing of primary chillers. In the essence of time, this option was not investigated. It would be interesting to see how this scenario would work out.

Lastly, the mechanical penthouse is pretty full at the moment. The chilled water pumps may be able to be located outside with the chillers they serve. This would be ideal otherwise redesigning of the penthouse's layout would have to be done.

MAE – CFD Analysis

Objective: The objective of this CFD analysis is to determine the mixing patterns in a typical classroom for my thesis project. The existing system in the building is a VAV system with 12"x12" diffusers. The new air system in the building will use fan power induction units (FPIU) that feed 12"x12" diffusers. Since VAV systems can modulate the amount of flow, the VAV at full flow and at the minimum turndown of 30% will be investigated. The FPIU system delivers a constant air volume to the room. The main objective is to determine how well both systems distribute air to the space. This analysis will be judged upon air stratification in the room, temperature gradients, velocity, and if any drafty spaces occur. Phoenics was the software chosen to perform this CFD analysis. Three models, one for each of the scenarios, was created and run under non-isothermal conditions.

<u>Classroom Layout</u>: The first task was creating the classroom. A variety of classrooms exist in Hunter's Point South School so the most common that occurred was chosen. This was IS Classroom 357 which is also very close to the design of a few others as well. Below you can see the layout of the room in Figure 28.

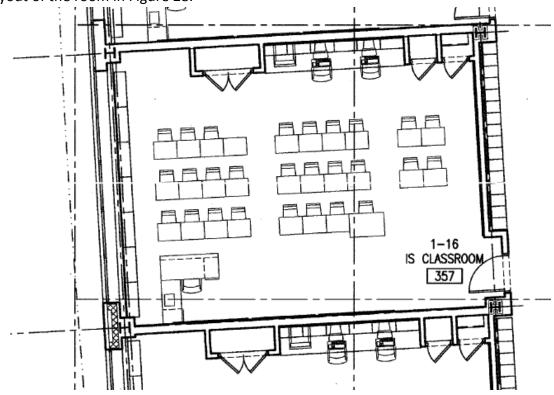


Figure 28 – IS Classroom 357 Layout

For a CFD analysis, you want to make the objects in the room as simple as possible. For this reason, only major objects in the room were considered. People, desks, cabinets, computers, the window, and the fin tube radiators were created in Phoenics. A list of a few of the objects'

dimensions and locations in the room can be seen below in Table 36 and the created model can be seen in Figure 29.

	S	Size (meters)			Location (meters)		
	×	у	Z	х	у	Z	
Room	9.449	7.137	3.048	0	0	0	
Window	0	6.045	2.235	0	0.546	0.813	
Large Cabinet	1.981	0.737	2.133	2.007	6.4	0	
SmallCab	1.829	0.737	2.133	7.468	6.4	0	
ComputerDesk	3.658	0.737	0.0254	3.962	6.4	0.671	
Comp1	0.4	0.35	0.35	6.3	6.6	0.671	
Comp2	0.4	0.35	0.35	5	6.6	0.671	
FinTube	0.152	5.486	0.813	0	0.74	0	
teacherdesk1	0.61	1.829	0.671	0.61	0	0	
teacherdesk2	1.219	0.61	0.671	1.22	1.219	0	
teacher	0.35	0.35	1.727	1.5	0.7	0	
teacher computer	0.35	0.4	0.35	0.75	0.7	0.671	
desk1	0.61	0.457	0.0254	0.914	4.699	0.671	
stud1	0.35	0.35	1.219	1.05	5.2	0	

Table 36 - Dimensions of Objects for CFD

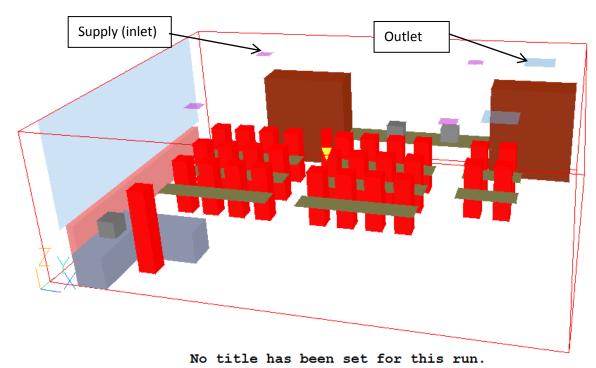


Figure 29 – CFD Room Model

For this investigation, three models were made:

- 1. VAV at full flow
- 2. VAV at 30% turndown
- 3. FPIU

The only objects that differed from the models were the fin tube radiator and the diffuser locations/type. Both VAV models have the fin tube radiator in them. This is because heating is accomplished through the fin tube radiator and not by the overhead air supply. The FPIU model has no fin tube radiator because heating is done through a heating coil in the FPIU. This means the heating is done by the supply air overhead in the FPIU model.

Both VAV models have the same diffuser locations and types, just different flow rates (one at full and one at 30% turndown). The FPIU's have slightly different diffuser locations as well as a different flow rate.

<u>Turbulent Models and Differencing Schemes</u>: The turbulent model and differencing scheme were chosen based on familiarity and acceptance. K-epsilon was used as the turbulent model because it is very widely accepted and I have used it the most. The hybrid scheme was used as the differencing scheme for the same reasons as above and because both diffusive and convective forces will occur in the room. 5000 iterations run time was allowed. All three models had these same qualities. This was done so if any differences occurred between the models then it couldn't be blamed on using a different model (like in a science experiment how you only want to change one variable at a time).

<u>Diffusers and the Momentum Method</u>: The diffusers used in the models were all 12"x12". Two types of diffusers existed however. One was a 4 way square diffuser and the other a 3 way square diffuser. For simplicity the 4 way square diffuser was broken up into 4 smaller 6"x6" boxes and the 3 way was broken into (2) 6"x6" boxes and (1) 6"x12" box. This can be seen more clearly in the images below.

4 way square diffuser:

3 way square diffuser:

The 4 way square diffusers distribute air perpendicular to all four of its sides. The specifications below show the air distribution for this diffuser.

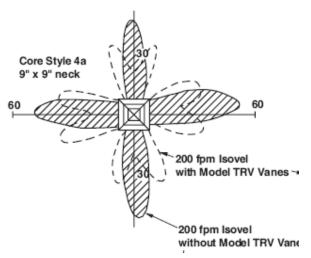
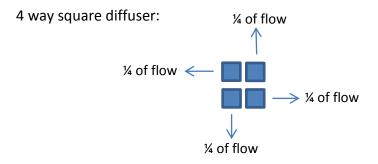
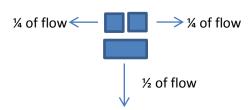




Figure 30 – Diffuser Air Dispersion

Since the air is distributed like this, it was determined that modeling the diffuser in 4 smaller segments each with one direction for its flow would be an accurate interpretation. The direction of the air flow can be seen below for both the 4 and 3 way diffusers.

3 way square diffuser:

The momentum method was chosen because the box method is not recommended for square diffusers as well as the momentum method's ability to more accurately simulate momentum in the space. Simulating the momentum is crucial to this analysis because it will be looked at as one of the criteria to determine whether the VAV or FPIU better distributes/mixes air in the space.

For the momentum method to be used in Phoenics the mass flow rate for the mass continuity equation must be found as well as the ratio of effective area to diffuser area (net area ratio). Finally, the velocity of the x or y component for the momentum method must be determined. Knowing the cfm through the diffuser, the mass flow rate is easily calculated using:

Below is an example of these calculations for the FPIU's diffusers (all are 4 way diffusers distributing 340 cfm each). The calculation is for one of the 6"x6" cells used to represent the diffuser.

Net Area Ratio = 0.7794

So enter into Phoenics:

- Vx = 2.2158 m/s
- Vy = -1.727

The calculations for the velocities (for mass and momentum) in all three of the models can be seen in Appendix AA.

An image of the diffuser with dimensions is shown in Figure 31 on the next page. It was used to help determine the net area ratio, which is equal to the effective area divided by the total area. This ratio is used to convert the velocities calculated above to keep conservation of momentum accurate. The total area was simply 144 inches squared (12" x 12"). The effective area is less because of the metal louvers. It was found to be roughly 112.2 inches squared resulting in a net area ratio of 0.7794. The full calculations for Net Area Ratio can be seen in Appendix AB. Note from the picture that the diffuser delivers air into a room at a 45 degree angle. This is a bad angle because it causes a lot of numerical diffusion (it is along the diagonal of a cell). To make up for this it was modeled that the air was brought into the room at a 30 degree angle with the ceiling.

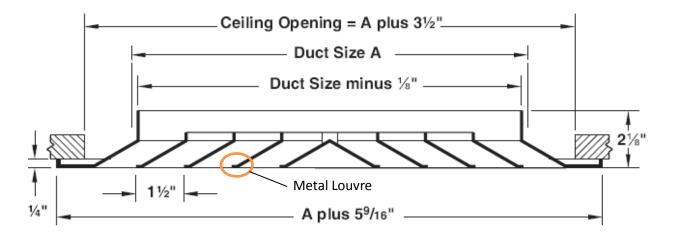


Figure 31 – Diffuser Cross Section

<u>Final Model Layouts:</u> Below are the final layouts for the inlets and outlets in each of the models along with their cfm. The inlets are red and the outlets are blue.

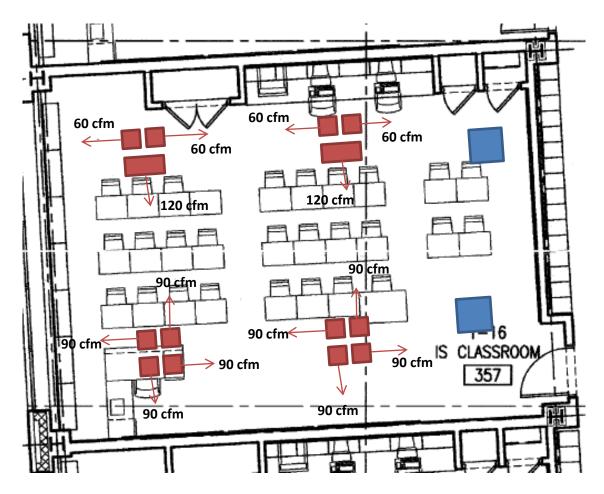


Figure 32 - VAV Full Flow Model

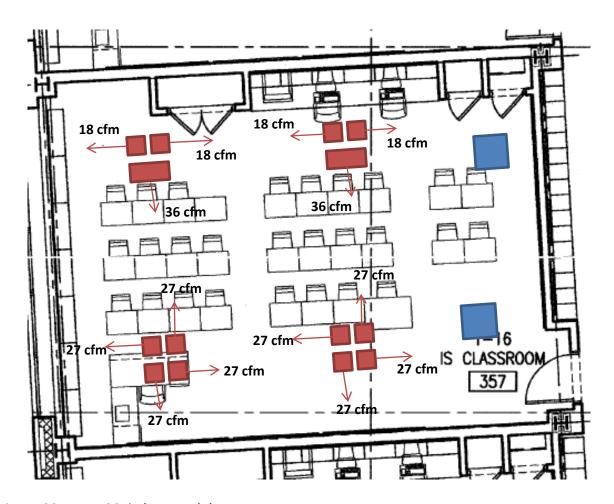


Figure 33 – VAV 30% Flow Model

Note that everything is in the same location as the VAV Full Flow Model. The difference is that the cfm through each diffuser has been reduced.

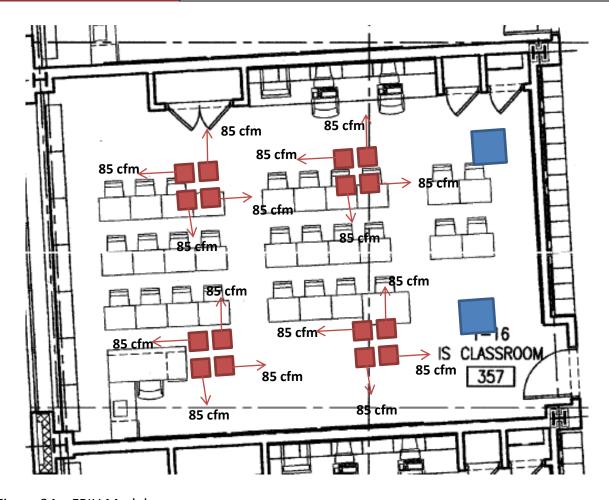


Figure 34 – FPIU Model

The outlet locations are the same as the two previous models. In the FPIU set up, the inlet locations changed slightly (more equally spaced) and the flow through the diffusers changed too.

Mesh/Grid: The mesh used for the VAV models was (71, 65, 42) cells in the (x,y,z) axis. The FPIU mesh was (97, 62, 42. The mesh near the inlets and returns was increased because this is a critical zone and using a smaller mesh would allow for more accurate results. Below are the images of the meshes near the inlets and outlets.

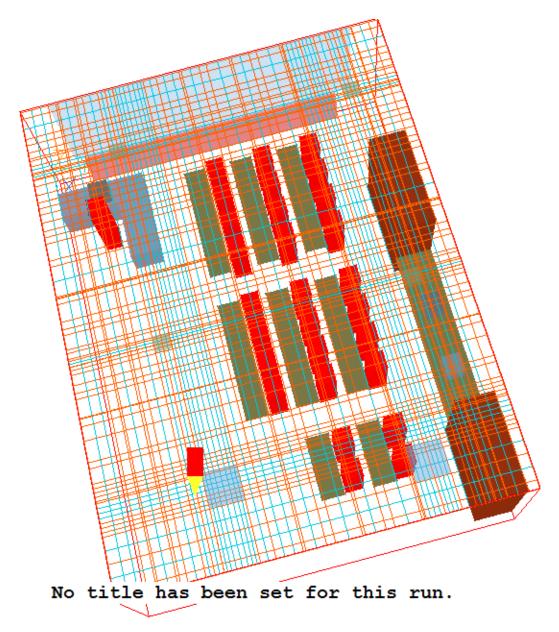


Figure 35 – Mesh for VAV Models (overhead view)

The mesh for both the VAV models is the same because they have the same locations for the inlets and outlets.

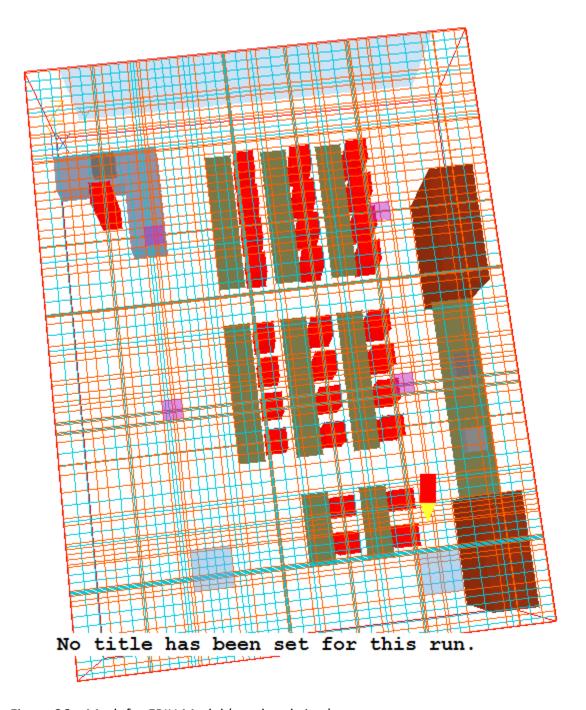


Figure 36 – Mesh for FPIU Model (overhead view)

<u>VAV Full Flow Results</u>: First the airflow and temperature fields were investigated under non-isothermal conditions for the VAV full flow model. The residuals found for mass and energy for the full VAV flow model were 1.66% and 0.39%, respectively. The percent can be as high as 7% for the energy residual and 3% for the mass residual. These two residuals are well within the recommended ranges. The residual figure can be seen below for the full VAV flow model.

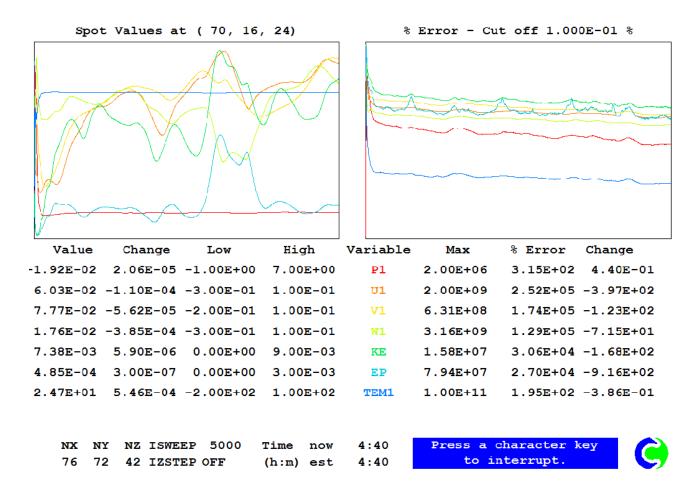


Figure 37 – Residual Figure VAV Full Flow

The full flow VAV model took 4 hours and 40 minutes to run. A linear relaxation factor of 0.7 was used for all the models (VAV full flow, 30% VAV flow, and the FPIU layout). The full VAV flow model assumed that the fin tube radiator was being run at full blast and that the supply air to the room was at 58°F. Infiltration as well as conduction loses through the exterior wall and window was modeled as negative heat fluxes. These same assumptions were made in the 30% VAV model except that the fin tube radiator was turned down as to not overheat the space (it was still needed to prevent drafts along the wall with the window). Table 37 on the next page shows the net Watts for each of the models well as the Watts given off by the sources in the room.

		30 Percent	
	VAV Full	VAV	FPIU
	(Watts)	(Watts)	(Watts)
people	2175	2175	2175
lights	768	768	768
fin tube	3640	50	0
computer	405	405	405
exterior wall	-85	-85	-85
window	-1016	-1016	-1016
infilitration	-475	-475	-475
diffusers	-5416	-1625	-1754
total (W):	-4	197	18
air temp (deg F)	58	58	68
cfm	1200	360	1360

Table 37 – Watt Productions in Rooms

For the full VAV flow model, the net Watts in the room is negative meaning the space should be slightly overcooled. However when checking the results, the space was found to be well above the room setpoint. It can be seen that the heat given off by the people drove the fin tube radiators and diffuser airflow in the models. The velocity profiles can be seen below for the VAV full flow model.

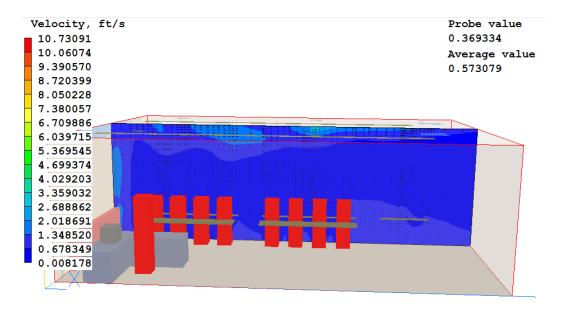


Figure 38 – VAV Full Flow, Velocity (along x-axis)

The probe in this snapshot is to the right of the students were the velocity is highest. The velocity is below 40 fpm so no drafts will occur here. To the right of the last students in this picture there is some areas were the air is above 40 fpm, around 54 fpm. This would cause drafts. Note that the air velocity near the cold window is higher than most room. A draft is induced across this cold surface but the fin tube radiator dissipates it before it reaches the occupants.

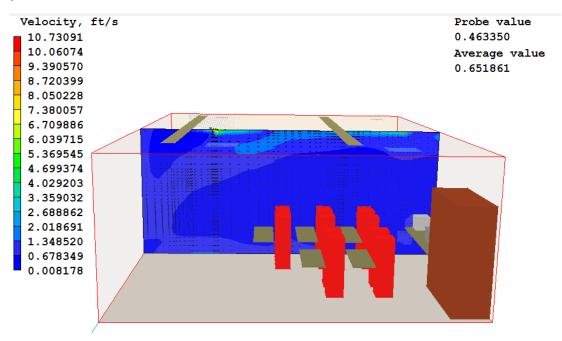


Figure 39 – VAV Full Flow, Velocity (along y-axis)

The probe for the above picture is located 4' off the ground in the center of the room. The results for the isothermal field show that the majority of the room has air traveling less than 40 fpm so no drafts will occur. A few spots are a tad above this. This could be bothersome because these spots are near the students. However, they do not go that far over 40 fpm. Overall the majority of the air in the students' area is draft free.

Next are the temperature profiles for the VAV full flow model.

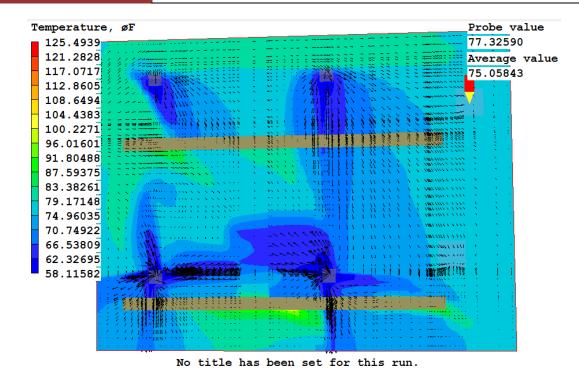


Figure 40 – VAV Full Flow, Temperature (along z-axis)

The probe is located in the return outlet. The above shot is overhead looking down at the room.

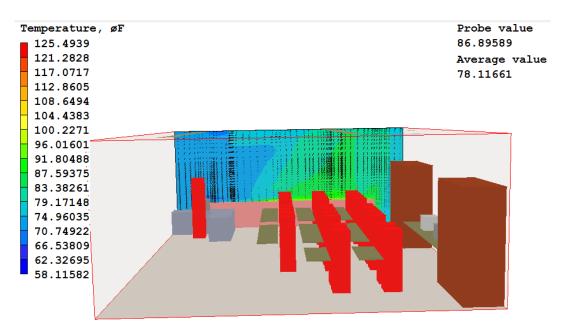


Figure 41 – VAV Full Flow, Temperature (along y-axis)

For this snapshot, it can be seen that the temperatures near the window are much higher than the room setpoint. This is because the fin tube radiator under the window is running at full blast. The temperature here is really high (probe located above the fin tube radiator), but as you move further away it becomes more uniform and closer to the room setpoint.

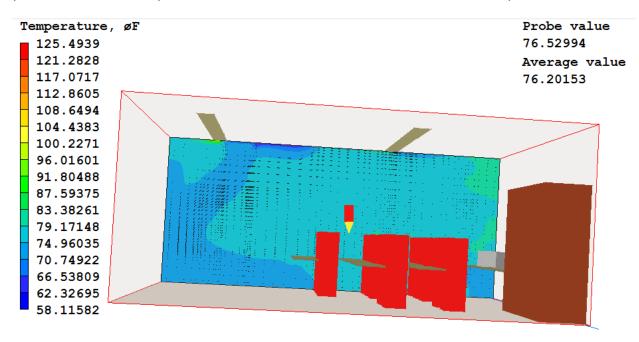


Figure 42 – VAV Full Flow, Temperature (along y-axis)

The temperature around the students is well above the setpoint of 72°F – high enough to cause discomfort.

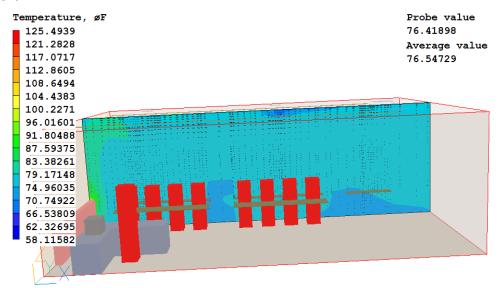


Figure 43 – VAV Full Flow, Temperature (along x-axis)

The probe is by the students next to the fin tube radiator. It can be seen that the air around the students here is also well over the room setpoint, it's about 76°F. This will cause discomfort to the students in this area. The temperature is a bit high throughout this cross section – averaging around 76.5°F. This can be fixed by dialing back the fin tube radiator. The fin tube radiator was on full blast at worst case scenario for this run. It's weird that the energy balance on the room showed that the space had a little excess cooling but yet the room appears to be overheated.

When the probe was placed at the return outlets in the VAV full flow, the temperature was found to be approximately 77°F. This is 5 degrees higher than the room setpoint. From the temperature distribution in the room it can be seen that the space would be too hot for the occupants.

<u>VAV 30% Flow Results</u>: The results for the 30% turndown VAV flow are shown now. For this scenario only a little heat would come out of the fin tube radiators because the loads in the room create enough heat to make up for the negative heat flux through the window and exterior wall. Also the fin tube radiator is needed to prevent drafts at the window. The mass residual is 2.178% and the energy residual is 0.49% - both falls within the acceptable range. Below is the mass residual figure.

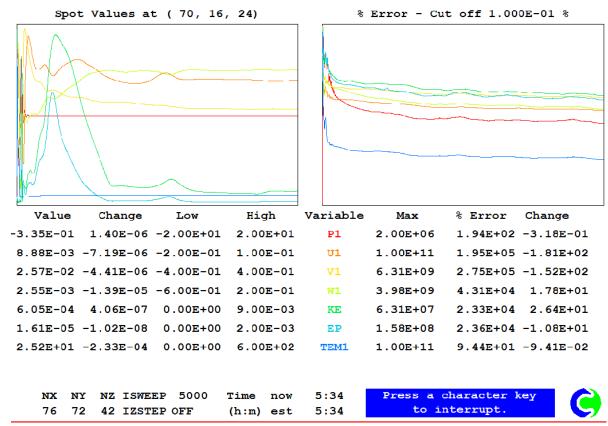


Figure 44 - Residual Figure VAV 30% Flow

The 30% vav flow model took 5 hours and 34 minutes to run. The velocity profiles for this scenario are shown starting on the next page.

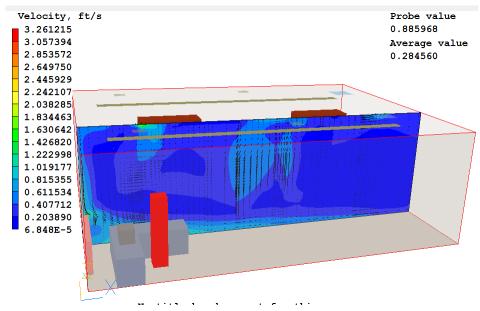


Figure 45 – VAV 30% Flow, Velocity (along x-axis)

It can be seen from this image that a lot of air movement occurs around the radiator. This is because the radiator is not putting out enough heat to negate the cold window and wall. The probe is located above the radiator and shows that the velocity is so high here that it will cause drafts.

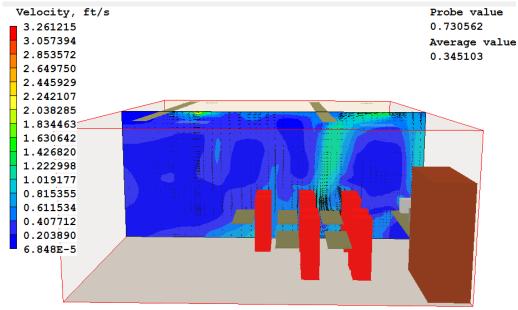


Figure 46 – VAV 30% Flow, Velocity (along y-axis)

The velocity in this slide is well above the recommended 40 fpm. As the probe travels higher into the green contours, the drafts become worse and worse. Near the front board the velocity is fine but in the 30% VAV flow model, many locations were found to have high velocities which would cause drafts. This is an example of one of them. Drafts occur overhead due to the low momentum and low temperature of the air. The air leaving the diffuser is very cold compared to the room (58°F supply, room setpoint 72°F). Since the air has such a low momentum and it is very cold, not all of the air sticks to the ceiling (Coanda effect) but instead sinks into the space causing drafts (cold air falls). This is a common problem in reduced flow for VAV systems.

Next are the temperature distributions in the rooms for the 30% VAV flow.

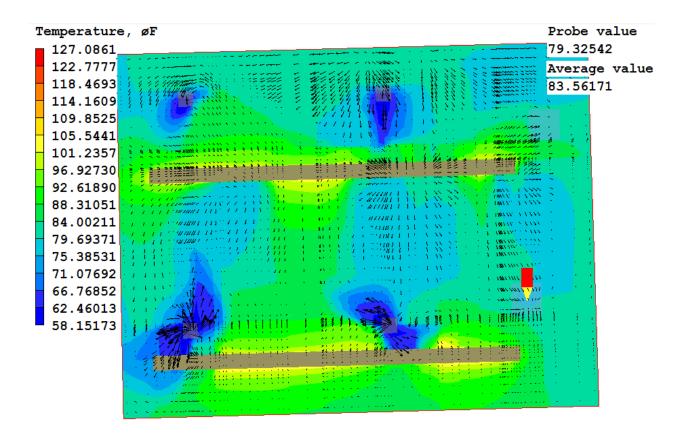


Figure 47 – VAV 30% Flow, Temperature (along z-axis)

The probe is located in the return outlet. The above shot is overhead looking down at the room.

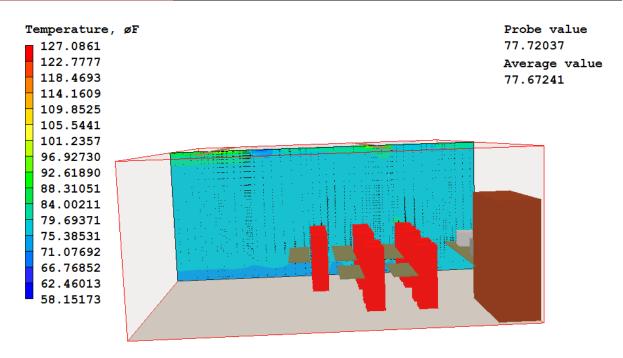


Figure 48 – VAV 30% Flow, Temperature (along y-axis)

The temperature in this cross section is 5 degrees above the setpoint. The room is too hot in the student area. This temperature was taken in the middle of the room where the cooling done by the supply air is not enough to match the heat given off by the students and far enough away from the window so the loses through the façade can't be felt.

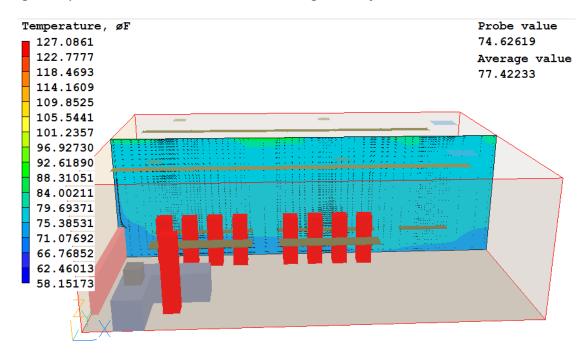


Figure 49 – VAV 30% Flow, Temperature (along x-axis)

Once again the temperatures in the cross section are much too high and will cause discomfort to the occupants in the room. For this picture, the probe was located next to the students near the window. The effects of the cold window can be seen on the temperature of the air in the space. The hot air is cooled over the window and falls to the ground by the fin tube radiator. The fin tube radiator is on to help negate the cooling done by the window but it ends up putting extra Watts in the room past the equilibrium point. This means the room should be a bit above the setpoint temperature but on average it is well above.

The 30% flow VAV results show a lot of drafts created in the room under the diffusers along with too high of temperatures in the space. The drafts are a bit confusing considering the velocity of the air supplied to the room is much slower that the full VAV flow model which didn't seem to have any draft problems. The conclusions for both the VAV models show that the spaces will be overheated and that there is a problem with high temperatures for the students near the fin tube radiators as well as draft problems for the 30% VAV flow model.

FPIU Model: The airflow and temperature fields were investigated under non-isothermal conditions for the FPIU model during the heating season (coldest winter day). The residuals found for mass and energy were 1.3% and 0.174%, respectively. Both residuals fall within the recommended ranges. The residual figure for this run can be seen below.

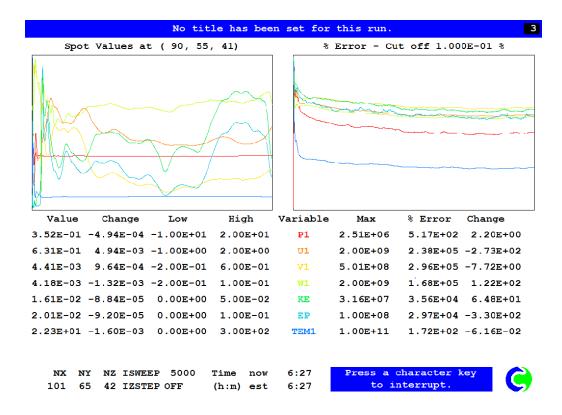


Figure 50 - Residual Figure FPIU Model

The model took 6 hours and 27 minutes to run. The velocity profiles found can be seen below.

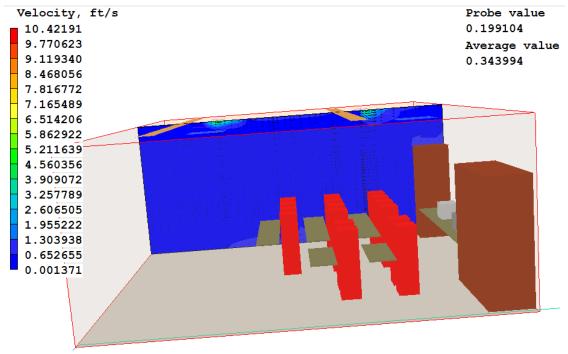


Figure 51 – FPIU Flow, Velocity (along y-axis)

The probe is located 4' off the ground around the students.

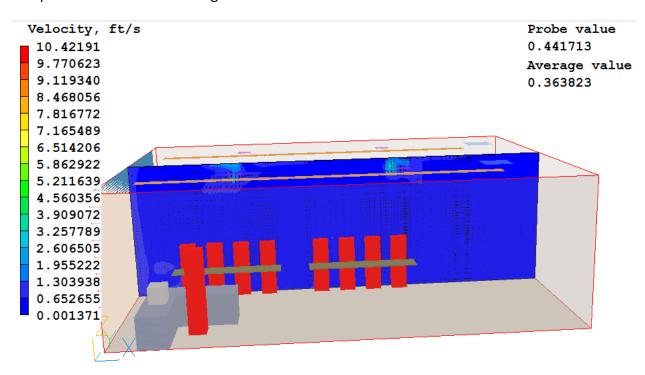
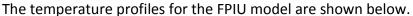



Figure 52 – FPIU Flow, Velocity (along x-axis)

Around the students, the air has a velocity less than 40 fpm meaning that there should be no drafts. The velocity of the air by the window is a bit higher (around 60 fpm). This is due to the drafts caused by the air being cooled when it goes over the window. These drafts however do not cross over into the student area. There may be a little draft along the side of the students closest to the window.

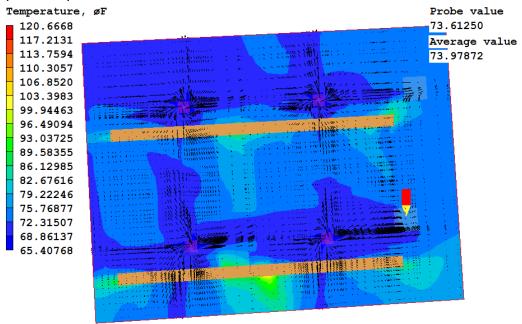
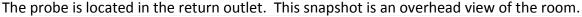



Figure 53 – FPIU Flow, Temperature (along z-axis)

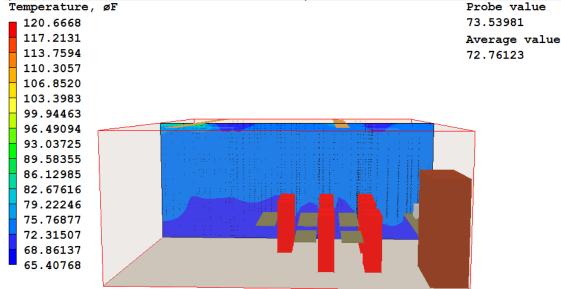


Figure 54 – FPIU Flow, Temperature (along y-axis)

It can be seen that the temperature around the students is on average slightly above the setpoint by only 1 degree. This is very promising. No big temperature differences exist and the room appears to have a uniform temperature.

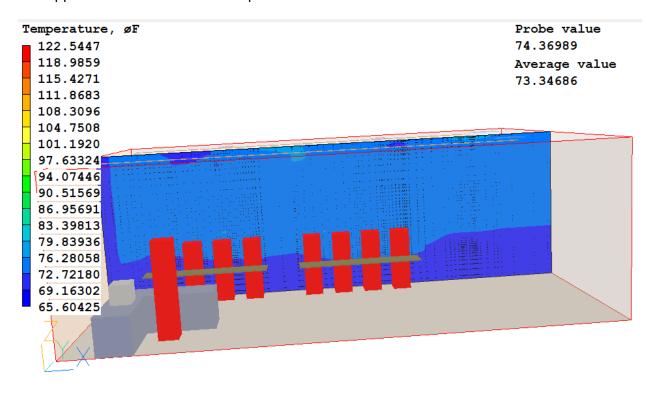


Figure 55 – FPIU Flow, Temperature (along x-axis)

Though a few different contour colors appear in the student area, the temperatures in this area only range from 68°F to 73°F where the 68°F is at the feet of the occupants and the 73°F is well above the students' heads. It can be seen that the heat loses through the window have an effect on the temperature in this area. Surprisingly though, the temperature is not lowered enough near the students to create thermal discomfort. The temperature is about 69°F at the wall but this is not within the occupied area so it is fine.

The temperature around the students is typically 72°F to 73°F. The return temperature was found to be 73.5°F in the return outlet. The set point temperature of the room is 72°F so the average temperature is directly on target. From these results it appears there should be no thermal discomfort in the FPIU room's layout.

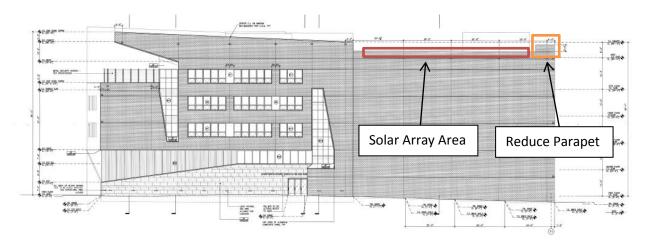
<u>Comparing Results:</u> The results from the FPIU scenario show the best air mixing and distribution in the space. Air velocity is kept below the recommended value of 40 fpm in the occupants' space to prevent drafts. The temperature in the room is right around the setpoint of 72°F (pretty much everywhere in the occupied zone). The best part about the FPIU results is it created a very uniform temperature and velocity profile in the room. This is great considering

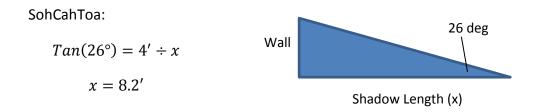
the space layout can be rearranged without worrying about whether there will be draft problems or great temperature fluctuations in different parts of the room.

The VAV models gave mixed results. A major draft problem occurred in the 30% VAV flow scenario. Both suffered from areas with temperatures well above the room setpoint. The air velocity around the students in the full flow VAV model was mostly below 40 fpm but random drafty areas did appear. In real life, the best option for the VAV system would be to turn it down somewhere between full and 30% flow and modulate the fin tube radiator's output accordingly. The results do not lead me to believe that the VAV system cannot create a thermal comfortable room free of drafts. The results for these two scenarios just show that with the current set up of the diffusers' supply cfm and temperature along with the fin tube radiator will not produce a thermally comfortable room.

Electrical Breadth

With the downsizing of the air handling units and splitting the original one chilled water loop with two chillers into a two chilled water loop with 3 smaller chillers, allowed for sufficient roof space to be cleared. Along with moving the chillers and new DOAS units around (as well as a few exhaust fans), the northeast roof area was freed up to allow photovoltaic solar panels to be installed. Though New York as a state does not have the most ideal features for solar panel installation in terms of sun, the solar array on the top of Hunter's Point South School would have direct sunlight with very minimal shading. No taller buildings or structures exist near Hunter's Point South School and all of the exhaust vents and fans have been moved behind the solar array (north of it). The adjourning roof parapet in the corner will have to be reduced to the same size as the rest of the extended exterior wall (4 feet above the roof) to allow for better solar gains. This can be seen in Figure 56 below.




Figure 56 – Southern Elevation Drawing (from A202)

The most beneficial reason for photovoltaic solar panels is that New York has the third highest electricity cost of states in the U.S. at 19 cents per kWh. This means that the solar array will payback quicker and produce a bigger payout in its life cycle.

The first step was determining which solar panel to choose and what mounting system would work with the panels. The SunPower 308 Watt solar panel was chosen for its optimum electrical performance. This panel has an 18% efficiency rating as compared to the 14% conventional panels have and since it is a larger panel it produces more electricity. This panel was also largely chosen because it would work with the SunPower PowerGuard mounting system. For buildings over 60 feet tall, typical solar panels cannot be used because of the great upwind forces on the panels. Since the roof of Hunter's Point South School is approximately 72 feet in the air, the SunPower 308 Watt solar panel in conjunction with the SunPower PowerGuard mounting system would work for this installation.

The SunPower PowerGuard allows for the solar panels to lie flush on the roof. The optimal tilt for a fixed solar array operating year round is 33.5 degrees in Queens, New York. However, since the panels will be flat less electrical production will occur. Though this is not desirable, there are some advantages to the SunPower PowerGuard. No roof penetrations will need to be made to anchor the system to the roof (instead cement pavers are used along the perimeter to hold the array down) so no leaking in the roof will occur. PowerGuard can be used for roofs that are over 60 feet in the air and work well with SunPower 308 Watt panels.

The next step was laying the panels out on the roof. SunPower 308 Watt panels must be strung out in multiples of 8 (meaning the total number of solar panels must be a multiple of 8). A minimum of nine feet is required for a step back from the edge of the roof to allow for maintenance and to reduce upwind effects. This 9 foot setback is checked below to make sure no shading would occur on the panels from the wall that extends four feet up along the perimeter of the roof during the winter solstice. In the winter solstice the sun will have an altitude of 26 degrees at its low point. Using the Pythagorean Theorem it can be seen that the setback of 9 feet is sufficient enough so that the 4 foot wall extension will not shade the panels.

The shadow will only reach 8.2 feet in from the wall so the solar panels are safe (9 feet back from the wall).

A 10 foot wall is directly to the left of the solar panel system. In the winter this wall will cast a 20 foot shadow. Since there is a setback of 9 feet form this wall, then 11' into the installation will be shaded. This is approximately 2 panels in. This is bad but as long as the sun is above a 42 degree angle, no shading will occur on the panels. For this shading to occur, the sun must be on its way down in the west. The wall is directly northwest of the solar array meaning that it will only cast a shadow once a day when the sun is setting. This means that the shading will not occur during peak energy generation during the day. In the end this wall will not have too great of an effect on the solar generation – thus it has been neglected for this analysis.

The final solar panel array along with its setbacks can be seen in Figure x below. Note that a 1.5 foot border surrounds the solar panels. This is part of the PowerGuard where the cement pavers weigh down the installation. The final shape is a complete rectangle that consists of 224

photovoltaic solar panels. Many customers are very picky that their solar arrays be complete rectangles for the aesthetic purpose.

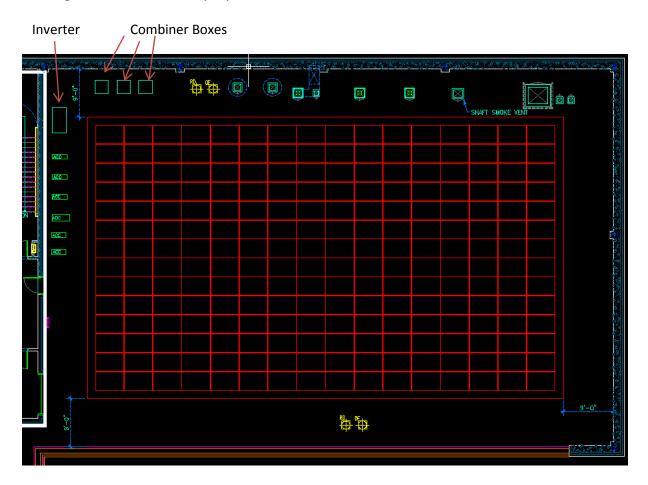


Figure 57 – Solar Panel Array

Once the array was laid out, the electrical production and life cycle analysis could be performed. The total system size for the solar array is 68.99 kW (224 panels times 308 Watts). It was chosen to use a 75 kW Satcon Inverter for this array. The system produces approximately 78,884 kWh per year which equates to 5% of Hunter's Point South School's new electrical bill (for the new changes proposed). Though this may not be a large percent, it will still save the school money and produce emission free electricity – making the building more sustainable. Electrical production on a month to month basis can be seen below in Figure 58 along with how much money the production will save the school a year in Table 38 (this is assuming the current rate of \$0.19 per kWh).

Appendices AC through AE have the specifications for the solar equipment used. The appendices show the SunPower 308 Panel, SunPower PowerGuard, and Satcon 75 kW Inverter, respectively. This information is shown to give a better understanding of the equipment. The

short circuit current found on the SunPower 308 Panel specifications was used in the calculations that follow to size the wire. Also note the inverter is NEMA 3R meaning that it can be installed outside (on the roof). This saves space in the mechanical penthouse.

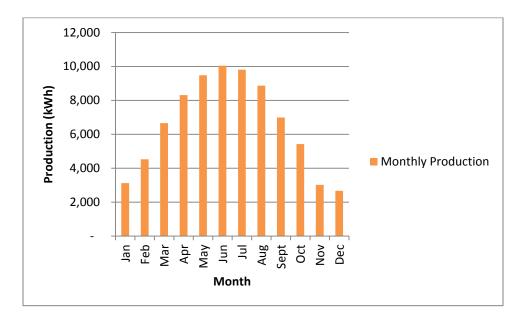


Figure 58 - Monthly Electrical Production

	Production	Electrical
Month	(kWh)	Savings
Jan	3,117	\$ 592.23
Feb	4,526	\$ 859.94
Mar	6,654	\$ 1,264.26
Apr	8,308	\$ 1,578.52
May	9,477	\$ 1,800.63
Jun	10,045	\$ 1,908.55
Jul	9,803	\$ 1,862.57
Aug	8,860	\$ 1,683.40
Sept	6,984	\$ 1,326.96
Oct	5,423	\$ 1,030.37
Nov	3,018	\$ 573.42
Dec	2,669	\$ 507.11
Totals:	78,884	\$14,987.96

Table 38 – Monthly Electrical Savings

The total cost of the solar array (including installation/labor as well as all the wiring, combiner boxes, inverter, etc.) is \$296,666. Though this may seem like a large amount at first, there are many federal and state incentives that will help lower this price. The first incentive is the

Renewable Energy Grant given by the U.S. Department of Treasury. For solar electric, this grant is equal to 30% of the total solar array cost (meaning \$89,000 in this case). The next incentive is the New York City Property Tax Abatement. This is a state incentive that allows for a property tax deduction equal to 5% of the total photovoltaic array cost annually for 4 years (meaning 20% of the total cost in the end). This equates to a savings of \$59,333. The last incentive is the Modified Accelerated Cost-Recovery System (MACRS) Depreciation. This is a federal incentive that allows for renewable energy technologies (such as solar) to be classified as a five-year property for depreciation deductions. This will result in a savings of \$88,258 over five years. After all the incentives it can be seen that the solar array which originally cost \$296,666 will be reduced to a cost of \$60,075 (20.3% of the original price).

It is important to mention that there are also other New York State incentives for solar photovoltaic installations. However, Hunter's Point South School is not eligible for this because they purchase their power from the New York Power Authority (NYPA). The other incentives require that the buildings that install solar buy their electric from companies that pay to the System Benefits Charge (SBC) or Renewable Portfolio Standard (RPS). Since the NYPA does not pay to either of these causes, Hunter's Point South School is not eligible for additional solar incentives in New York. Lastly, New York does not have an SREC market (solar renewable energy credit). SREC credits may be sold from the solar array owner to power companies in SREC markets. This accounts for a good chunk of money for solar producers. It is estimated that Hunter's Point South School could sell their SREC credits for approximately \$20,000 per year if New York were to have a similar SREC market to Pennsylvania's. Unfortunately, it does not have an SREC market at all.

Solar arrays of this magnitude are usually paid for using a loan and can be available through SunPower for SunPower products. Since significant upfront savings were made in the mechanical alterations, no loan was needed to pay for this solar array. A cash flow diagram year to year for the 25 year life cycle can be seen below in Table 39. The red represents negative cash flow. Also note that an inverter replacement is assumed in year 15 which accounts for the much higher maintenance cost. Electric savings each year are not symmetric because price escalation was assumed for electricity costs over time, as well as for

											-							
Year: maintenar	ice.	. 0		1	2		3	4		5	6	7	8	9	10	11		12
Maintenance	\$	-	\$	300	\$ 300	\$	300	\$ 300	\$	300	\$ 300	\$ 300	\$ 300	\$ 300	\$ 300	\$ 300	\$	300
Renewable Energy																		
Grant (Treasury)	\$	-	\$	89,000	\$ -	\$	-	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$	-
NY City Property Tax																		
Abatement	\$	-	\$	14,833	\$ 14,833	\$:	14,833	\$ 14,833	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$	-
MACRS Depreciation	\$	-	\$	52,955	\$ 14,121	\$	8,826	\$ 5,295	\$	7,061	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$	-
Electric Savings	\$	-	\$	13,939	\$ 13,639	\$:	13,639	\$ 13,489	\$	13,489	\$ 13,489	\$ 13,639	\$ 13,789	\$ 13,939	\$ 14,089	\$ 14,089	\$	14,089
Payments	\$ 29	6,666	\$	-	\$ -	\$	-	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$	-
Total Annual Cash Flow	\$(29	6,666)	\$	170,427	\$ 42,293	\$:	36,998	\$ 33,317	Ś	20.250	\$ 13,189	\$ 13,339	\$ 13,489	\$ 13,639	\$ 13,789	\$ 13,789	\$	13,789
Cumulative Cash Flow	\$(29	6,666)	\$((126,239)	\$ (83,946)	\$(4	46,948)	\$ (13,631)	\$	6,619	\$ 19,809	\$ 33,148	\$ 46,637	\$ 60,275	\$ 74,064	\$ 87,853	\$1	101,642

	13		14		15		16		17		18	19		20		21		22		23		24		25
\$	300	\$	300	\$	20,600	\$	300	\$	300	\$	300	\$ 300	\$	300	\$	300	\$	300	\$	300	\$	300	\$	300
\$	-	\$		\$		\$	-	\$	-	\$	-	\$ -	\$		\$	-	\$	-	\$	-	\$	-	\$	-
\$	-	\$		\$		\$	-	\$	-	\$	-	\$	\$	-	\$	-	\$	-	\$	-	\$	-	\$	_
\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
\$	14,089	\$	14,089	\$	14,089	\$	14,089	\$	13,939	\$	13,939	\$ 13,939	\$	14,089	\$	14,089	\$	14,239	\$	14,239	\$	14,239	\$	14,239
\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
\$	13,789	\$	13,789	\$	(6,511)	\$	13,789	\$	13,639	\$	13,639	\$ 13,639	\$	13,789	\$	13,789	\$	13,939	\$	13,939	\$	13,939	\$	13,939
\$1	115,430	\$1	129,219	\$1	22,708	\$:	136,497	\$:	150,135	\$:	163,774	\$ 177,413	\$:	191,202	\$2	204,990	\$2	218,929	\$:	232,868	\$:	246,806	\$2	260,745

Table 39 – Life Cycle Cost

After computing all the incentives in the life cycle analysis, the photovoltaic solar array had a five year payback (red box in Table x above shows this). Over the course of its 25 year life, the system produces 1,972,100 kWh. This equates to reducing greenhouse gas emissions by 1,351 tons of CO₂. With electric price escalation, the system had a cumulative cash flow of \$260,745 which is a total life-cycle payback of 188%.

Lastly, the system had to have its parts sized and be tied into Hunter's Point South School. Below in Figure 59 is a schematic of a string of solar panels (8 solar panels tied together). Notice how the panels are combined negative to positive. After the panels are put in strings, they are then fed to combiner boxes. It was calculated 3 combiner boxes were needed -10 strings of panels each to 2 of boxes and 8 strings to another $(10 \times 8 \times 2 + 8 \times 8 = 224 \text{ panels})$.

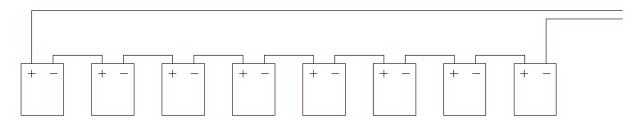


Figure 59 – String of Panels

On the next page is a diagram of the whole solar photovoltaic system in Figure 60, the wire sizes are called out as well. The panels are strung and then fed into 3 combiner boxes. From there the combiner boxes feed into the DC Disconnect and then the DC current is converted to useful AC current for the building in the inverter. From the inverter the current travels through the AC Disconnect and is back fed into Switchboard 2. Switchboard 2 was chosen because it has 3 open poles on it.

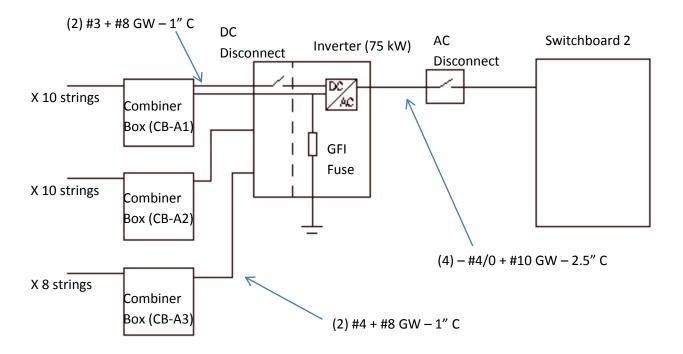


Figure 60 – Schematic of Solar Photovoltaic System

The calculations for the wire sizing can be seen in Appendix AF. Appendix AG has the NEC Tables referred to in the wire sizing calculations. Below is a summary in Table 40 of the combiner box sizing.

		Maximum	Output	Fuse		
	# of	Current	Wire Size	Rating	Ground	
Name	Circuits	(Amps)	(2)	(Amps)	Wire Size	EMT Size
CB-A1	10	75.3	3 AWG	80	8 AWG	1"
CB-A2	10	75.3	3 AWG	80	8 AWG	1"
CB-A3	8	60.2	4 AWG	75	8 AWG	1"

Table 40 – Combiner Box Information

Switchboard 2 had to be tied into from the inverter. An image of the balancing on the current Switchboard 2 can be seen below in Figure 61.

JOB NUMB	ER												
DISTRIBUTE	ON PANEL	SWBD-2	(SERVICE)		3PH, 4W+	⊦G.							
VOLTAGE		208	. ,		-								
BUS SIZE		2000			10			LOCATION			1st FI E	ec Service I	Rm
PROTECTIME	E DEVICE	1	(Fuse=1	Bkr=2)				MOUNTING			FLOOR		
MAIN OVER	CURRENT DEVICE			2000				AIC			200000		
						PROTECT	IVE DEVICE				FEEDER		
CKT	NAME	HP	KVA	AMP	POLE	SW/BKR	FUSE/	WIRE		WIRE.	COND	NEUTR	GND
No						FRAME	TRIP	PER/SET	SETS	SIZE	SIZE	SIZE	SIZE
1	1EDP-LS/ATS-LS		231	640	3	800	800	4	2	500	3 1/2	500	2/0
2	Panel 5DP-K1		107	297	3	400	400	4	1	500	3 1/2	500	2
3	Panel 3LP-DIM-1		57	159	3	200	200	4	1	3/0	2	3/0	4
4	Panels (1-2)AP-B		42	116	3	200	150	4	1	1/0	2	1/0	6
5	Panels (3-4)AP-B		70	194	3	400	250	4	1	250	2 1/2	250	4
6	Panels (3-5)AP-A		53	146	3	200	200	4	1	3/0	2	3/0	4
7	Panels (1-2)AP-A		63	175	3	400	225	4	1	4/0	2 1/2	4/0	4
8	Panels (1-3)LP-A		66	183	3	400	250	4	1	250	2 1/2	250	4
9	Panel (4-5)LP-A		45	126	3	200	175	4	1	2/0	2	2/0	6
10	Panel 3LP-DIM-2		57	158	3	200	200	4	1	3/0	2	3/0	4
14	Spare			0	. 0	400	→ O	0	#N/A	#N/A	#N/A	#N/A	∦N/ A
12	Spare			0	0	400	0	0	#N/A	#N/A	#N/A	#N/A	#N/A
13	Spare			0	0	200	0	0	#N/A	#N/A	#N/A	#N/A	∦ N/A
TOTAL KV	A			790									
TOTAL AM	P			2194									
SPARE	(DECIMAL)			0.1									
DEM.	(DECIMAL)			0.7									
FEEDER DE	MAND AMP			1755									

Figure 61 – Switchboard 2 Initial

The original breaker on the switchboard was 2000 Amps. Adding in the inverter will add 208 Amps. The breaker is sized based on the feeder demand amperage. The old panel had a demand amperage of 1755. A demand factor was not included for the inverter. This gives a total new demand amperage of 1755 + 208 = 1963 Amps. This is still below the 2000 Amps breaker so there is no need for an upsize. The balanced new switchboard 2 can be seen in Appendix AH.

Structural Breadth

When solar panels are added to a roof a structural analysis must always be performed. The non-composite deck, beams, girders, and columns were checked to see if the extra weight would be managed. The structural calculations, assumptions, and drawing layout can be seen in Appendix AI for all of the above listed as well as the pages used in the steel manual and Vulcraft catalog after the calculations in Appendices AJ through AL. The results showed that the beams and columns were sufficient with the added load. However, the non-composite deck and girder had to be upsized. The non-composite deck failed due to deflection under live and total load. The deck was originally designed as a 3.25" lightweight concrete over a 3" deep-18 gage metal deck. It has been changed to a Vulcraft 2C16 non-composite deck, which is 5" lightweight concrete with a 3" deep-16 gage deck. The girders also failed under total load deflection. The girders were upsized from a W21x50 to a W24x55.

The new DOAS units sit atop the old AHU's positions and the new chillers sit on the existing chillers' locations. Since the new DOAS units weigh less than the existing AHU's and the new chillers weigh less than the old ones, a structural analysis will not be needed to prove that the roof will support these new loads. A reduction in weight on the roof will not cause it to fail. The old roof layout can be seen below in Figure 62 (the mechanical equipment being changed is bold labeled).

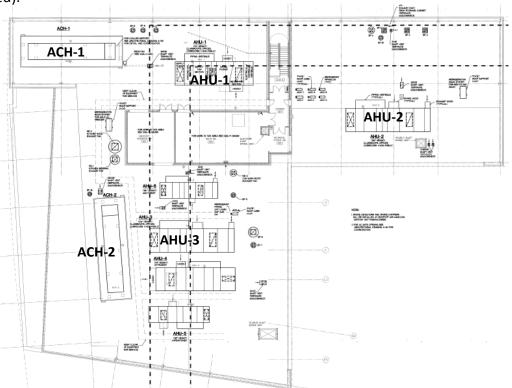


Figure 62 – Old Roof Layout

The locations of the three new chillers, 2 DOAS units, and the photovoltaic solar panels can be seen below in Figure 63 in red.

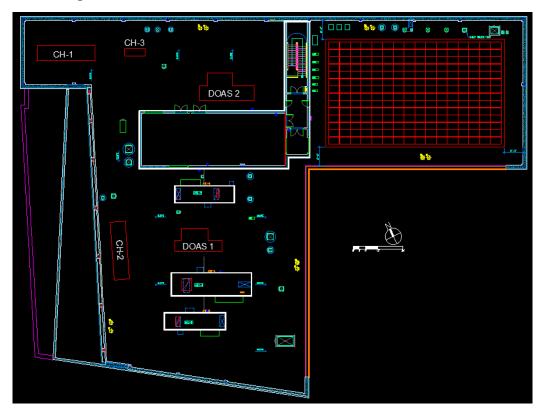


Figure 63 – New Roof Layout

Lastly, the upgrades to the current roof were priced. The prices for the structural roof upgrades can be seen below in Table 41 and the calculations in Appendix AM. The total cost for the upgrades was \$18,501.79. This is a onetime cost and requires no maintenance. This cost is easily paid off by the solar panels.

Stru	uctural Up	grade Co	osts											
Lightweight	Lightweight													
Conrete	Steel Deck	Girders	Total Cost											
\$ 8,392.23	\$9,398.36	\$711.20	\$18,501.79											

Table 41 – Structural Upgrade Costs

Results

Energy Reduction and Costs

After all of the design changes, it was found that there would be both an electricity savings each year as well as a savings in natural gas. The savings can be seen below in Table 42 as well as the cost savings per year. The numbers from the original Design Engineer's calculations are added as reference.

	Electricty (kWh	Natural Gas (BTU x 10 ⁶ per year)	lectricity	 atural Gas Cost per vear	Tot	al Cost per vear	Squ	ost per are Foot Building
Design Engineer	1,720,210	6,740	290,640	\$ 104,066	\$	394,706	\$	2.58
Existing Building (TRACE)	1,614,418	4,228	\$ 306,739	\$ 65,202	\$	371,941	\$	2.43
Design Changes (TRACE)	1,508,917	2,504	\$ 286,694	\$ 38,604	\$	325,298	\$	2.13
Differnce (TRACE)	105,501	1,725	\$ 20,045	\$ 26,598	\$	46,643	\$	0.31
Reduction in % (between								
TRACE models)	7%	41%	7%	41%		13%		13%

Table 42 – Energy Comparison

The electricity demand each year was mainly reduced due to the photovoltaic solar array. There was a small reduction in electricity also due to the mechanical changes. The biggest savings was in the reduction in natural gas - so much so that the boiler system could be reduced. This huge reduction in natural gas usage is due to the total energy recovery wheels in the DOAS units. The wheels can accomplish the majority of heating of the outside air needed for ventilation by using the energy from the exhaust air. This means that the preheat coil was not needed anymore (it would be good practice to keep it though incase the wheel failed).

On the next page Figures 64 and 65 show two graphs comparing the usage of electricity and therms of natural gas throughout the year for the existing building and the building with the proposed design changes. During just about every month the electricity and natural gas usage is reduced for both cases.

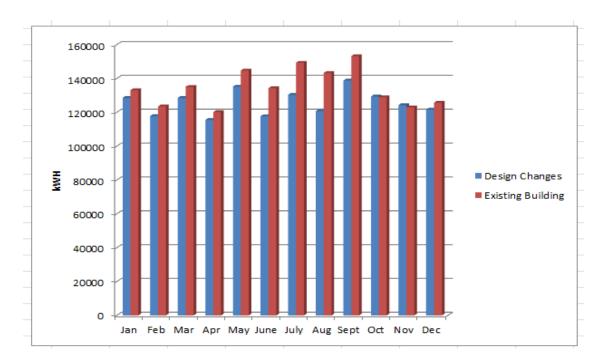


Figure 64 – Comparison of Electricity Usage

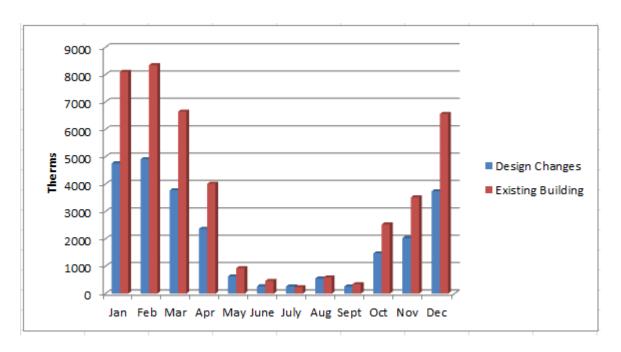


Figure 65 – Comparison of Natural Gas Usage

A breakdown of where the energy was used in the building with the proposed designs can be seen below in Table 43 and for the existing building in Table 44. As it can be seen from the two tables, pump energy in the new redesign increased. This is expected because chilled water must now be pumped to the FPIU's cooling coils throughout the building. decreased only slightly in the new design because the DOAS units supply so much less air to the spaces than AHU's 1 through 3 but there is additional fan energy needed at the rooms for the recirculated air to the FPIU's. Lastly, as discussed before, the natural gas usage greatly reduced in the new design due to the usage of the total energy recovery wheels. This can be seen under the heating tab. It is interesting to see that the electricity for heating in the new design increased as compared to the existing building. This is due to the electricity needed to be put into to spinning the wheels.

	% of Building		
	Consumption	kWh	Gas (kbtu)
Heating	31.8	4,022	2,503,480
Cooling	7.4	171,388	-
Fans	22.3	516,984	-
Pumps	8.1	187,196	-
Lighting	17.4	404,413	-
Receptacles	13.1	303,799	-

Table 43 – Energy Usage Breakdown Proposed Designs

% of Building		
Consumption	kWh	Gas (kbtu)
43.5	3,243	4,228,437
7.3	208,595	1
19.4	553,218	-
5.2	148,158	-
14.2	404,413	-
10.4	296,791	-
	Consumption 43.5 7.3 19.4 5.2 14.2	Consumption kWh 43.5 3,243 7.3 208,595 19.4 553,218 5.2 148,158 14.2 404,413

Table 44 – Energy Usage Breakdown Existing Building

A pie chart was created to better see the energy consumption breakdown for the new design. This can be seen below in Figure 66.

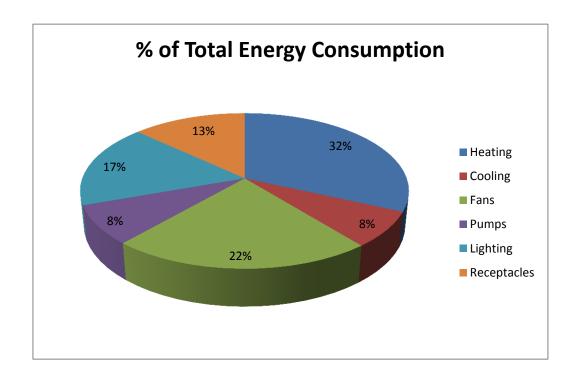


Figure 66 – Energy Usage Breakdown Proposed Design

Savings were also created in the changes of the mechanical system. Below in Table 45 is a comparison of the initial cost savings between the old rooftop AHU's 1 through 3 and the original 2 chillers compared to the new 2DOAS (including total energy recovery wheels) and 3 chillers.

New D)esig	gn		Base B	uild	ing
DOAS 1	\$	75,000		AHU's 1-3	\$	765,650
DOAS 2	\$	122,000		Old Chillers	\$	820,000
CH-1	\$	155,000				
CH-2	\$	155,000				
CH-3	\$	26,900				
Total=	\$	533,900				
Co	ost v	vith install	ation/labo	r/location fact	or	
Total=	\$	963,476		Total =	\$	1,585,650

Table 45 – Initial Savings of AHU's and Chillers

The changes in the AHU's and chillers amounted to a savings of \$622,174 in initial costs. Adding the FPIU's and creating a secondary chilled water loop also caused a big change in costs. Below in Table 46 is the cost associated with the FPIU's. This table shows the cost of the FPIU's, the price of ductwork due to the reduction in duct sizes, the additional piping costs for the secondary chilled water loop, the additional cost of pumps due to the secondary chilled water loop, and an estimate for an increase in the HVAC controls cost associated with the FPIU's and secondary chilled water loop.

	New Duct	Additional	2 New	Extra HVAC	Total New
FPIU's Cost	Cost Total	Piping	Pumps Cost	Controls	Cost
\$241,809.18	\$227,498.00	\$209,130.00	\$ 11,601.00	\$136,500.00	\$826,538.18

Table 46 – Cost Associated with the FPIU's New Design

The next table, Table 47, shows the cost relating to the original building for the changes to a FPIU system. The original building uses VAV boxes with fin tube radiators for heating. In the new design, the VAV boxes and fin tube radiators were removed and replaced with the FPIU's which had heating coils in them. The ductwork is also larger in the original design because more air is supplied to the rooms by the VAV AHU's compared to the DOAS units.

VAV Box		Fin Tube	Old Total
Cost	Old Duct Cost	Radiators	Cost
\$216,000.00	\$961,675.00	\$300,000.00	\$1,477,675.00

Table 47 – Base Building Costs Associated with FPIU's

The new FPIU system saves \$651,137 from the above cost comparison. Overall the new mechanical changes to Hunter's Point South School save \$1,273,311. This is more than enough to pay for the photovoltaic solar array (\$296,666) and the upgrade needed in structural costs (\$18,502). The initial upfront cost savings with all the design changes is \$958,143. This is quite a lot. However, to get a better picture of the true savings – including energy reduction, the cost of the solar array's maintenance, and solar incentives - a 25 year life cycle comparison was done between the original design of Hunter's Point South School and the proposed changes.

Life Cycle Cost Analysis

Once all the changes to Hunter's Point South School were designed and priced, a life cycle cost analysis could be performed to see the true savings of the new design. The life cycle cost (LCC) analysis was performed over a 25 year period. This was done because that is the system life of the solar array. Price escalations for electricity and gas as well as discount rates were found in the Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis – 2011. For annual costs, a discount rate of 2.3% was used. Below in Table 48 is the 25 year LCC analysis for the existing building (base building). It shows the price of electricity and natural gas brought back to a net present value so it can easily be compared to the proposed designs. No maintenance for HVAC equipment/systems was used for either the base or proposed design building. This is because maintenance information is very hard to determine and is usually dictated by what contract is signed between the building owner and manufacturer. It was assumed the difference in mechanical maintenance costs between the base and proposed design building would be very minimal.

	25 Year				Cost Each Year						
Year	LCC	Electricity	Natural Gas	El	lectricity	Nat	tural Gas				
1	2013	0.93	0.95	\$	285,267	\$	61,942				
2	2014	0.91	0.91	\$	279,132	\$	59,334				
3	2015	0.91	0.90	\$	279,132	\$	58,682				
4	2016	0.90	0.90	\$	276,065	\$	58,682				
5	2017	0.90	0.91	\$	276,065	\$	59,334				
6	2018	0.90	0.92	\$	276,065	\$	59,986				
7	2019	0.91	0.93	\$	279,132	\$	60,638				
8	2020	0.92	0.94	\$	282,200	\$	61,290				
9	2021	0.93	0.95	\$	285,267	\$	61,942				
10	2022	0.94	0.97	\$	288,335	\$	63,246				
11	2023	0.94	0.98	\$	288,335	\$	63,898				
12	2024	0.94	0.99	\$	288,335	\$	64,550				
13	2025	0.94	1.00	\$	288,335	\$	65,202				
14	2026	0.94	1.01	\$	288,335	\$	65,854				
15	2027	0.94	1.02	\$	288,335	\$	66,506				
16	2028	0.94	1.03	\$	288,335	\$	67,158				
17	2029	0.93	1.04	\$	285,267	\$	67,810				
18	2030	0.93	1.05	\$	285,267	\$	68,462				
19	2031	0.93	1.06	\$	285,267	\$	69,114				
20	2032	0.94	1.07	\$	288,335	\$	69,766				
21	2033	0.94	1.08	\$	288,335	\$	70,418				
22	2034	0.95	1.09	\$	291,402	\$	71,070				
23	2035	0.95	1.09	\$	291,402	\$	71,070				
24	2036	0.95	1.11	\$	291,402	\$	72,374				
25	2037	0.95	1.12	\$	291,402	\$	73,026				
			MDV	ć	E 260 220	Ċ1	216 720				
			NPV:	Ş	5,368,339	Ş1	,216,738				

Table 48 – LCC Base Building

\$6,585,077

Total NPV:

The LCC of the proposed design building was then computed. The values in red signify savings that were made in the new design. Savings were made in the mechanical systems and through incentives for the solar array. In this analysis, all cost increases and decreases of the new design were considered. Table 49 below shows the LCC analysis of the proposed design building.

		Ecco	lation		Cost Ea	ch V	'oor		nitial Costs				Mainte	nanco		s,	Jack	Incentive	_	
-		ESCO	lation		COSCEA	CIT	eai	- 11	illiai costs				Wallic	nance	Ren	newable	nai i	NYC	_	1ARCS
	25 Year															rgy Grant	Pro		-	
Year	LCC	Electricity	Natural Gas	Е	lectricity	Nat	tural Gas	Mechanical	Solar	St	ructural	9	Solar	Inverter		easury)		tement		n
1	2013	0.93	0.95	\$	266,625	\$	36,674	\$ 1,273,311	\$296,666	\$	18,502	\$	300		\$	89,000	\$	14,833	\$	52,955
2	2014	0.91	0.91	\$	260,892	\$	35,130					\$	300				\$	14,833	\$	14,121
3	2015	0.91	0.90	\$	260,892	\$	34,744					\$	300				\$	14,833	\$	8,826
4	2016	0.90	0.90	\$	258,025	\$	34,744					\$	300				\$	14,833	\$	5,295
5	2017	0.90	0.91	\$	258,025	\$	35,130					\$	300						\$	7,061
6	2018	0.90	0.92	\$	258,025	\$	35,516					\$	300							
7	2019	0.91	0.93	\$	260,892	\$	35,902					\$	300							
8	2020	0.92	0.94	\$	263,758	\$	36,288					\$	300							
9	2021	0.93	0.95	\$	266,625	\$	36,674					\$	300							
10	2022	0.94	0.97	\$	269,492	\$	37,446					\$	300							
11	2023	0.94	0.98	\$	269,492	\$	37,832					\$	300							
12	2024	0.94	0.99	\$	269,492	\$	38,218					\$	300							
13	2025	0.94	1.00	\$	269,492	\$	38,604					\$	300							
14	2026	0.94	1.01	\$	269,492	\$	38,990					\$	300							
15	2027	0.94	1.02	\$	269,492	\$	39,376					\$	300	\$ 20,300						
16	2028	0.94	1.03	\$	269,492	\$	39,762					\$	300							
17	2029	0.93	1.04	\$	266,625	\$	40,148					\$	300							
18	2030	0.93	1.05	\$	266,625	\$	40,534					\$	300							
19	2031	0.93	1.06	\$	266,625	\$	40,920					\$	300							
20	2032	0.94	1.07	\$	269,492	\$	41,306					\$	300							
21	2033	0.94	1.08	\$	269,492	\$	41,692					\$	300							
22	2034	0.95	1.09	\$	272,359	\$	42,078					\$	300							
23	2035	0.95	1.09	\$	272,359	\$	42,078					\$	300							
24	2036	0.95	1.11	\$	272,359	\$	42,850					\$	300							
25	2037	0.95	1.12	\$	272,359	\$	43,236					\$	300							
			NPV:	\$.	5,017,524		\$720,391	\$ 1,273,311	\$296,666	\$	18,502		\$5,656	\$ 14,433	\$	89,000	\$	57,374	\$	86,595
			T																	
			Total NPV:	54	4,566,893															

Table 49 – LCC Proposed Designs

The base building had a NPV of \$6,585,077 while the proposed design building had a NPV of \$4,566,893. This gives a NPV savings of \$2,018,185 (for the initial 25 years). A breakdown of where costs were saved can be seen in Table 50 below. Note the red value is extra costs that the proposed design had to pay and that the values are all in NPV.

LCC Savings over 25 Years (NPV)								
Initial Cost:	\$	958,143						
Electricity:	\$	350,815						
Natural Gas:	\$	496,347						
Solar Maintenance								
and Inverter:	\$	20,089						
Solar Incentives:	\$	232,969						
Total:	\$	2,018,185						

Table 50- LCC Comparison

Emissions

As part of the objectives of the proposed designs, emissions reduction was strived for. This will further help Hunter's Point South School in its efforts to become a more green and sustainable school. It will also serve as a teaching mechanism for the students. The emissions created by electricity, on site combustion, and transportation for fuel to the building can be seen below in Tables 51 through 53 for Hunter's Point South School with the proposed redesigns.

Pollutant	lb of pollutant per kWh of electricity	lb of pollutant per year due to electricity
CO _{2e}	1.03E+00	1,554,184.51
CO ₂	9.61E-01	1,450,069.24
CH4	2.59E-01	390,809.50
N ₂ O	1.68E-05	25.35
NOx	1.72E-03	2,595.34
SOx	6.23E-03	9,400.55
CO	1.75E-03	2,640.60
TNMOC	6.38E-05	96.27
Lead	5.59E-08	0.08
Mercury	3.99E-08	0.06
PM10	6.87E-05	103.66
Solid Waste	6.18E-02	93,251.07
kWh/year =	1,508,917	

Table 51 – Proposed Design Electricity Emissions

Pollutant	lb of pollutant per 1000 cubic ft of natural gas	Ib of pollutant per year due to on-site combustion
CO _{2e}	1.23E+02	307,930.50
CO ₂	1.22E+02	305,427.00
CH ₄	2.50E-03	6.26
N ₂ O	2.50E-03	6.26
NOx	1.11E-01	277.89
SOx	6.32E-04	1.58
CO	9.33E-02	233.58
VOC	6.13E-03	15.35
Lead	5.00E-07	0.00
Mercury	2.60E-07	0.00
PM10	8.40E-03	21.03
cubic fee	t of natural gas =	2503500

Table 52 – Proposed Design Emissions On-Site Combustion

Pollutant	Ib of pollutant per 1000 cubic ft of natural gas	Ib of pollutant per year due transportation to site
CO _{2e}	2.78E+01	69,597.30
CO ₂	1.16E+01	29,040.60
CH4	7.04E-01	1,762.46
N ₂ O	2.35E-04	0.59
NOx	1.64E-02	41.06
SOx	1.22E+00	3,054.27
CO	1.36E-02	34.05
TNMOC	4.56E-05	0.11
Lead	2.41E-07	0.00
Mercury	5.51E-08	0.00
PM10	8.17E-04	2.05
PM-unspecified	1.42E-03	3.55
Solid Waste	1.60E+00	4,005.60
cubic feet of na	atural gas =	2503500

Table 53 – Proposed Design Emissions Transportation

The total emissions of the new design can be seen and compared with the original building's emissions below in Table 54.

Pollutant	Existing Building (Ib of pollutant)	Redesign (lb of pollutant)	Reduction in Emissions (lb of pollutant)	Reduction %
CO _{2e}	2,300,493.26	1,931,712.31	368,780.95	16.0%
CO ₂	2,116,369.94	1,784,536.84	331,833.10	15.7%
CH4	421,121.63	392,578.23	28,543.40	6.8%
N ₂ O	38.69	32.20	6.49	16.8%
NOx	3,315.50	2,914.28	401.21	12.1%
SOx	15,219.14	12,456.41	2,762.74	18.2%
CO	3,277.25	2,908.23	369.02	11.3%
TNMOC	103.19	96.38	6.81	6.6%
VOC	25.92	15.35	10.57	40.8%
Lead	0.093	0.086	0.007	7.7%
Mercury	0.066	0.061	0.005	7.2%
PM10	149.88	126.74	23.15	15.4%
PM-unspecified	6.00	3.55	2.45	40.8%
Solid Waste	106,536.47	97,256.67	9,279.80	8.7%

Table 54 – Emissions Comparison

The emissions of each pollutant were decreased by atleast 6.8%. Overall great reductions were made in emissions. The total carbon dioxide equivalent emission reduced by 16%.

Conclusion

The proposed changes to Hunter's Point South School not only made the school more sustainable but also more energy efficient. Electric and natural gas usage both decreased. The downsizing of AHU's 1, 2, and 3 to two DOAS units as well as the chillers downsizing helped produce a big upfront cost. This along with the savings from smaller ducts, allowed for full financing of the photovoltaic solar panel array. This solar array gave a green, sustainable function to Hunter's Point South School that can be used as both a learning tool for the students as well as free electricity generation. Emissions output were also lowered.

The objectives of creating a more sustainable school and supplying the correct amount of ventilation air to each room were both accomplished in the new design. In the end, the proposed design changes had a huge impact on Hunter's Point South School for the better.

References

- Aman. (2011, January 11). How to calculate the MACRS depreciation incentive for solar systems. In Sunmath Toolbox. Retrieved March 7, 2012, from http://sunmath.com/blog/how-to-calculatethe-macrs-depreciation-incentive-for-solar-systems
- ANSI/ASHRAE. (2007). Standard 62.1-2007, Ventilation for Acceptable Indoor Air Quality. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Condition Engineers, Inc.
- ANSI/ASHRAE. (2007). Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential Buildings. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.
- ASHRAE. Handbook of Fundamentals. Atlanta: ASHRAE, 2009.
- Deru, M., & Torcellini, P. (2007). Source Energy and Emission Factors for Energy Use in Buildings. National Renewable Energy Laboratory, 5-28.
- Ductwork Sheet Metal Gauges (n.d.). In *The Engineering Toolbox*. Retrieved February 13, 2012, from http://www.engineeringtoolbox.com/ductwork-sheet-metal-gauges-d_1157.html
- DSIRE Staff. (2012). DSIRE Solar. In Database of State Incentives for Renewable & Efficiency. Retrieved March 8, 2012, from http://www.dsireusa.org/
- FXFOWLE Architects. 100% Construction Documents Volume 1 Architectural & Structural. FXFOWLE Architects, New York, NY.
- FXFOWLE Architects. 100% Construction Documents Volume 2 MEP, Fire Protection & Audio Visual. FXFOWLE Architects, New York, NY.
- Kneifel, J. D., Lippiatt, B. C., & Rushing, A. S. (2011). Energy Price Indices and Discount Factors For Life-Cycle Cost Analysis. N.p.: NIST.
- McQuiston, Faye C., Jerald D. Parker, and Jeffrey D. Spitler. Heating, Ventilating, and Air Conditioning Analysis and Design. 6th ed. USA: John Wiley & Sons, Inc, 2005. N. pag. Print.
- National Renewable Energy Laboratory. (2009, March 10). A Performance Calculator . In PVWatts. Retrieved March 7, 2012, from http://rredc.nrel.gov/solar/calculators/PVWATTS/version1/
- New York Department of State. Mechanical Code of New York State. Albany, 2007.
- NFPA 70 National Electric Code 2011 (2011th ed.). (2010). Quincy, MA: National Fire Protection Association.
- Pocket Guide. Atlanta: ASHRAE, 1997.
- Reed Construction Data. (2012). RSMeans Mechanical Cost Data 2012 (33rd ed., pp. 137-312). USA.

Specifications Books 1-3 (2011). Solicitation NO.: SCA10-006621-1

Steel Construction Manual (13th ed.). American Institute of Steel Construction.

Trane. TRACE 700. Trane, Inc. Piscataway, NJ.

U.S. Green Building Council. LEED 2009 for New Construction and Major Renovations. Washington, D.C., 2008.

Appendix A – List of Tables

Table 1 – Energy Prices	10
Table 2 – Outdoor Design Air Conditions	11
Table 3 – Indoor Design Conditions	11
Table 4 – Air Handling Units' Section 6 of ASHRAE Standard 62.1 Compliance	11
Table 5 – TRACE Loads	12
Table 6 – Designer's Load Calculations	12
Table 7 – Energy Usage TRACE vs. Design Engineer	13
Table 8 – Base Building Electricity Emissions	15
Table 9 – Base Building Emissions On-Site Combustion	15
Table 10 – Base Building Emissions Fuel Transportation	16
Table 11 – Total Emissions	16
Table 12 – Boiler Schedule	17
Table 13 – Chiller Schedule	18
Table 14 – Heat Pump Schedule	18
Table 15 – Exhaust Fan Schedule	18
Table 16 – Air Handler Unit Schedule	19
Table 17 – Pump Schedule	19
Table 18 – Mechanical Cost Breakdown	20
Table 19 – Lost Usable Space	21
Table 20 – Building Envelope Requirements	34
Table 21 – Vertical Fenestration Area	34
Table 22 – System Efficiencies	35
Table 23 –Pipe Insulation Thickness	35
Table 24 – Fan Power	36
Table 25 – Lighting Power Density	38
Table 26 – Electric Motors	39
Table 27 – Minimum Exhaust Rates	57
Table 28 – FPM for Duct Runs	58
Table 29 – ESP Fans	60

Table 30 – DOAS Information	61
Table 31 – Effectiveness of Wheel	63
Table 32 – FPIU's Fan CFM	65
Table 33 – FPIU's Cost	66
Table 34 – Pump Characteristics	74
Table 35 – CH-3 Options	80
Table 36 – Dimensions of Objects for CFD	82
Table 37 – Watt Productions in Rooms	92
Table 38 – Monthly Electrical Savings	108
Table 39 – Life Cycle Cost	109
Table 40 – Combiner Box Information	111
Table 41 – Structural Upgrade Costs	114
Table 42 – Energy Comparison	115
Table 43 – Energy Usage Breakdown Proposed Designs	117
Table 44 – Energy Usage Breakdown Existing Building	117
Table 45 – Initial Savings of AHU's and Chillers	118
Table 46 – Cost Associated with the FPIU's New Design	119
Table 47 – Base Building Costs Associated with FPIU's	119
Table 48 – LCC Base Building	120
Table 49 – LCC Proposed Designs	121
Table 50 – LCC Comparison	121
Table 51 – Proposed Design Electricity Emissions	122
Table 52 – Proposed Design Emission On-Site Combustion	122
Table 53 – Proposed Design Emissions Transportation	123
Table 54 – Emissions Comparison	123

Appendix B – List of Figures

gure 1 – Electricity Usage by Month 1	.3
gure 2 – Natural Gas usage by Month1	4
gure 3 – Energy Usage Breakdown of Existing Building1	4
gure 4 – Total Emissions	7
gure 5 – VAV AHU and VAV Box Schematic2	2
gure 6 – CAV AHU2	3
gure 7 – Chiller Water System2	4
gure 8 – Hot Water System2	5
gure 9 – Climate Regions in the United States3	3
gure 10 – Total Energy Recovery Wheel with Purge Section5	1
gure 11 – Fan-Powered Induction Unit5	2
gure 12 – Proposed Roof Layout5	4
gure 13 – DOAS 1 and DOAS 2 Positioning5	8
gure 14 – Air Flow Diagram DOAS 15	9
gure 15 – Air Flow Diagram DOAS 25	9
gure 16 – Energy Recovery Wheel Cooling Mode6	2
gure 17 – Energy Recovery Wheel Heating Mode6	3
gure 18 – Dew Point On FPIU's Cooling Coil6	4
gure 19 – Friction Loss Chart for Schedule 40 Steel6	8
gure 20 – Pipe Sizing6	9
gure 21 – 2 nd Floor Piping	0
gure 22 – Resistance Coefficient	1
gure 23 – Equivalent Lengths Fittings 7	2
gure 24 – Friction Factor 7	3
gure 25 – Pump Curve	4
gure 26 – Primary Chilled Water Loop 7	7
gure 27 – Secondary Chilled Water Loop 7	8
gure 28 – IS Classroom 357 Layout 8	1
gure 29 – CFD Room Model 8	2

Figure 30 – Diffuser Air Dispersion	84
Figure 31 – Diffuser Cross Section	86
Figure 32 – VAV Full Flow Model	86
Figure 33 – VAV 30% Flow Model	87
Figure 34 – FPIU Model	88
Figure 35 – Mesh for VAV Models (overhead view)	89
Figure 36 – Mesh for FPIU Model (overhead view)	90
Figure 37 – Residual Figure VAV Full Flow	91
Figure 38 – VAV Full Flow, Velocity (along x-axis)	92
Figure 39 – VAV Full Flow, Velocity (along y-axis)	93
Figure 40 – VAV Full Flow, Temperature (along z-axis)	94
Figure 41 – VAV Full Flow, Temperature (along y-axis)	94
Figure 42 – VAV Full Flow, Temperature (along y-axis)	95
Figure 43 – VAV Full Flow, Temperature (along x-axis)	95
Figure 44 – Residual Figure VAV 30% Flow	96
Figure 45 – VAV 30% Flow, Velocity (along x-axis)	97
Figure 46 – VAV 30% Flow, Velocity (along y-axis)	97
Figure 47 – VAV 30% Flow, Temperature (along z-axis)	98
Figure 48 – VAV 30% Flow, Temperature (along y-axis)	99
Figure 49 – VAV 30% Flow, Temperature (along x-axis)	99
Figure 50 – Residual Figure FPIU Model	100
Figure 51 – FPIU Flow, Velocity (along y-axis)	101
Figure 52 – FPIU Flow, Velocity (along x-axis)	101
Figure 53 – FPIU Flow, Temperature (along z-axis)	102
Figure 54 – FPIU Flow, Temperature (along y-axis)	102
Figure 55 – FPIU Flow, Temperature (along x-axis)	103
Figure 56 – Southern Elevation Drawing (from A202)	105
Figure 57 – Solar Panel Array	107
Figure 58 – Monthly Electrical Production	108
Figure 59 – String of Panels	110
Figure 60 – Schematic of Solar Photovoltaic System	111

Britt Kern

Hunter's Point South Intermediate School & High School

Figure 61 – Switchboard 2 Initial	112
Figure 62 – Old Roof Layout	113
Figure 63 – New Roof Layout	114
Figure 64 – Comparison of Electricity Usage	116
Figure 65 – Comparison of Natural Gas Usage	116
Figure 66 – Energy Usage Breakdown Proposed Design	118

Appendix C – Minimum Ventilation Calculation

			P	AHU-1								
				Rp								
B	B		Area	(cfm/perso	Ra	_		_				_
Room No.	Room Name	Occupancy Type	(sf)	n)	(ofm/sf)		Vbz (ofm)		Voz (cfm		Zp	Ev:
141	CustodianStorage	Storage Rooms	401	0	0.12	0	49	0.8	62	135	0.46	
	Is Project Room	Classrooms (age 9 plus)	1412	5	0.12	70	520	0.8	650		0.52	1
	Is Art	Art Classroom	1088	10	0.018	54	560	0.8	700	960	0.73	0
109A	Supervisor	Office Space	270		0.06	2	27	0.8	34	100		1
	Corridor 1st Floor West	Corridors	2800	0	0.06	0	168	0.8	210		0.91	0
246	Medical Suite	Daycare sickroom	702	10	0.18	6	187	0.8	234	230	1.02	0
241	Custodian Shop	Break Rooms	364	5	0.06	3	37	0.8	47	125	0.38	
207B	Storage	Storage Rooms	104	0	0.12	0	13	0.8	17	34	0.50	1
205A	Office Work Room	Office Space	331	5	0.06	3	35	1	35	59	0.59	0
207	Staff Development/Literacy Coacl	Conference/meeting	954	5	0.06	47	293	0.8	367	620		0
207A	Office	Office Space	77	5	0.06	1	10	0.8	13		0.29	1
205B	A/V Storage	Storage Rooms	89	0	0.12	0	11	1	11		0.92	0
205C	Tech Center	Computer lab	412	10	0.12	10	150	0.8	188	200		0
205	Library	Libraries	3883	5	0.06	48	473	0.8	592	1170	0.51	1
242	Physical Therapy	Health club/aerobics	477	20	0.06	4	109	1	109	105	1.04	0
206	Office	Office Space	203	5	0.06	2	23	0.8	29	35	0.83	(
209	Cw - Activities for Daily Living	Classrooms (age 9 plus)	500	10	0.12	12	180	0.8	225	235	0.96	
	Corridor 2nd Floor South	Corridors	1230	0	0.06	0	74	0.8	93	125	0.74	(
308A	Meeting Room	Conference/meeting	133	5	0.06	6	38	1	38	160	0.24	
	Is Classroom	Classrooms (age 9 plus)	684	10	0.12	34	423	0.8	529	550	0.96	-
	Is Classroom	Classrooms (age 9 plus)	684	10	0.12	34	423	0.8	529	550	0.96	0
	Is Classroom	Classrooms (age 9 plus)	688	10	0.12	34	423	0.8	529	550	0.96	0
307	Records	Storage Rooms	208	, o	0.12	0	25	1	25	100	0.25	Ť
311	Gen Office	Office Space	494	5	0.06	5	55	0.8	69	190	0.26	
315	Principal	Office Space	394	5	0.06	3	39	0.8	49	100	0.49	-
309A	Waiting	Reception areas	144	5	0.06	6	39	0.0	39	67	0.43	-
309	Mail	Office Space	288	5	0.06	2	28	1	28	35	0.80	-
303	Corridor 3rd Floor West	Corridors	1350	0	0.06	0	81	0.8	102	135	0.76	
401	Hs Classroom		680	10	0.00	34	422	0.8	528	550	0.76	0
403/405	Hs Classroom	Classrooms (age 9 plus)	1400	10	0.12	68	848	0.8	1060			0
		Classrooms (age 9 plus)					25			100	0.36	_
407	Records	Storage Rooms	208	0	0.12	0		1	25			
411	Gen Office	Office Space	494	5	0.06	5	55	0.8	69	99	0.70	0
415	Principal	Office Space	394	5	0.06	2	34	0.8	43	100	0.43	
311A	Сору	Office Space	144	5	0.06	1	14	0.8	18	41		
411A	Сору	Office Space	144	5	0.06	1	14	0.8	18	21		- (
409	Mail	Office Space	288	5	0.06	2	28	1	28	35	0.80	0
409A	Waiting	Reception areas	144	5	0.06	6	39	1	39	67	0.58	0
	Corridor 4th Floor West	Corridors	1350	0	0.06	0	81	0.8	102	135	0.76	- (
524	Hs Receiving	Office Space	428	5	0.06	1	31	0.8	39	83	0.47	1
522	Hs Receiving Vestibule	Reception areas	386	5	0.06	2	34	0.8	43	103	0.42	
	Hs Guidance College	Office Space	372	5	0.06	3	38	0.8	48	100	0.48	1
6/516A/516B	Hs Guidance Office	Office Space	489	5	0.06	5	55	0.8	69	200	0.35	
	Corridor 5th Floor East	Corridors	1800	0	0.06	0	108	0.8	135	200	0.68	0
508	Hs Supervisory	Office Space	224	5	0.06	2	24	1	24	60	0.40	
506	Mediation	Conference/meeting	99	5	0.06	4	26	1	26	40	0.65	
245	Office	Office Space	164	5	0.06	2	20	0.8	25	100	0.25	
308B	Guidance Room	Office Space	250		0.06	2	25	1	25	160		
		•		_		526	6414			11391		
				AHU-1			You*			Vps^		
		actual	min oa	intake (cfm):	14945							
		actual		supply (cfm):	30000					Xs=	0.56308	
		dovida									3.00000	
			mi	nimum oa								
				on AHU can	0.50							
			macci	Ev=	0.52	0	m Ventila	FO:-	ionou			
				Vot=	12218	Syste	m ventila	don Emic	iency			

				2									
		,	AHU-	-2									
			Area	,	Ra								
Room No.	Room Name	Occupancy Type	(sf)	n)	(cfm/sf)		Vbz (cfm)			Vpz (ofm)		Evz	
113/115	Is & Hs Parents Meeting Room	Conference/meeting	802		0.06	10	99	0.8				1.18	
	Furniture Storage, Vault W. Anteroom, Vestib		474		0.12	0	57	0.8	72			1.16	
119	Custodial Office	Office Space	314		0.06	3	34	1	34			1.30	
116	School Safety Office/Locker Rooms	Office Space	479		0.06	3	44	0.8				1.09	
118, 120	Is Receiving/General Supply Room	Office Space	519		0.06	5	57	0.8				0.92	
	Corridor 1st Floor East	Corridors	1060		0.06	0	64	1	64	100		1.00	
13/215/219/221		Classrooms (age 9 plus)	1888		0.12	100	1227	0.8		1600		0.68	
217	Special Education Clasroom	Classrooms (age 9 plus)	500		0.12	25	310	0.8		400		0.67	
225	Special Education Clasroom	Classrooms (age 9 plus)	659		0.12	31	390	0.8		510		0.69	
226	Special Education Clasroom	Classrooms (age 9 plus)	505		0.12	25	311	0.8		375		0.61	
224	Special Education Clasroom	Classrooms (age 9 plus)	530		0.12	26	324	0.8				0.69	
222	Hs Book Storage	Storage Room	489		0.12	0	59	0.8				0.99	
220	Classroom Speech	Classrooms (age 9 plus)	190		0.12	9	113	1				0.88	
218	Classroom Speech	Classrooms (age 9 plus)	190		0.12	9	113	1			0.76	0.88	
216	Is Book Storage	Storage Room	489		0.12	0	59	0.8				0.99	
214	Is Audio/Video Security Storage Room	Storage Room	361		0.12	0	44	0.8		65	0.85	0.80	
	Corridor 2nd Floor East	Corridors	1450		0.06	0	87	1	87	145	0.60	1.04	
318	Is Music	Classrooms (age 9 plus)	536		0.12	27	335	0.8		405	1.03	0.61	
320	Is Resource	Classrooms (age 9 plus)	323		0.12	16	199	0.8	249	260		0.68	
322	Is Resource	Classrooms (age 9 plus)	311		0.12	15	188	0.8				0.68	
	Corridor 3rd Floor East	Corridors	830		0.06	0	50	1				1.14	
324	Is Classroom	Classrooms (age 9 plus)	726		0.12	34	428	0.8	535	555	0.96	0.68	
325	Is Special Education	Classrooms (age 9 plus)	467		0.12	23	287	0.8		375		0.69	
323	Is Science Lab	Science Laboratories	903		0.18	30	463	0.8		600		0.68	
321	Is Science Prep	Science Laboratories	374		0.18	1	78	0.8	98	1200		1.56	
319	Is Science Lab	Science Laboratories	900		0.18	30	462	0.8				0.68	
317	Is Classroom	Classrooms (age 9 plus)	726		0.12	36	448	0.8				0.68	
	Corridor 4th Floor East	Corridors	830		0.06	0	50	1	50			1.14	
41774197421	Hs Classroom	Classrooms (age 9 plus)	2022		0.12	102	1263	0.8				0.69	
423/425	Hs Classroom	Classrooms (age 9 plus)	1415		0.12	70	870	0.8		1130		0.68	
424	Hs Classroom	Classrooms (age 9 plus)	685		0.12	34	423	0.8	529	550		0.68	
422	Hs Resource	Classrooms (age 9 plus)	356	10	0.12	17	213	0.8	267	280	0.95	0.69	
420	Hs Music Storage	Storage Room	383		0.12	0	46	0.8				0.80	
418	Hs Music	Classrooms (age 9 plus)	465		0.12	23	286	0.8		367	0.98	0.67	
517	Hs Special Education	Classrooms (age 9 plus)	468	10	0.12	23	287	0.8	359	185	1.94	-0.30	not u
519	Hs Science Lab	Science Laboratories	1261	10	0.18	38	607	0.8	759	1300	0.58	1.06	
521	Science Prep	Science Laboratories	501	10	0.18	5	141	0.8	177	1200	0.15	1.49	
523	Science Lab Demo	Science Laboratories	996	10	0.18	30	480	0.8	600	625	0.96	0.68	
525	Science Lab Demo	Science Laboratories	1010	10	0.18	30	482	0.8	603	630	0.96	0.69	
						830	11478			17868			
				AHU-2			You^			Vps^			
		actual	min o	a intake (cfm):	19445								
		actual	max	supply (cfm):	31700					Xs =	0.64238		
			mi	inimum oa									
			fracti	ion AHU can	0.61								
				Ev=	0.61	Syste	m Ventila	tion Effic	iencų				
			1	Vot=	18971	,,,,,							

			AF	IU-3								
Room No.	Room Name		Area (sf)	Rp	5 / 5 / 5		M (5)	Ez			_	
	Is Classroom	Occupancy Type	2892	(cfm/person)		Pz 144	Vbz (cfm) 1788	0.8		Vpz (cfm) 2320	Zp 0.96	Evz 0.74
361/359/357/355 353	Is Classroom	Classroom (age 9 plus) Classroom (age 9 plus)	780			39	484	0.8			0.96	0.74
351/349	Is Classroom		1358		-	66	823	0.8			0.96	0.74
	Is Special Education	Classroom (age 9 plus)	_			21	263	0.8			0.96	0.74
347		Classroom (age 9 plus)	438				263 34					
341	Is Staff Locker	Storage Room	280		-			0.8			0.24	1.46
	Corridor 3rd Floor South	Corridors	3125			_	188 1794	0.8			0.72	0.98
,,,	Hs Classroom	Classroom (age 9 plus)	2944								0.93	0.77
453	Hs Classroom	Classroom (age 9 plus)	780				484	0.8			0.96	0.74
451/449	Hs Classroom	Classroom (age 9 plus)	1360				824	0.8			0.96	0.74
447	Hs Special Education	Classroom (age 9 plus)	389				167	0.8			0.95	0.75
441	Hs Staff Locker	Storage Room	280			0	34	0.8			0.23	1.47
	Corridor 4th Floor South	Corridors	3125				188	0.8			0.72	0.98
	Corridor 5th Floor South	Corridors	1540			_	93	1			0.40	1.30
539/541	Men's & Women's Locker Rooms	Storage Room	170			0	21	0.8			0.25	1.45
545	Guidance Records	Office Space	165				15	0.8			0.42	1.28
547	Program Office	Office Space	235		0.06	_	25	0.8			0.21	1.49
549	Hs Store	Storage Room	260		0.12		32	0.8			0.40	1.30
551	Government & Club House	Office Space	474	5	0.06	6	59	0.8	74	200	0.37	1.33
552	Hs Art Room	Art Classroom	1051	10	0.18	52	710	0.8	888	925	0.96	0.74
						594	8026			11460		
				AHU-3			Vou ^			Vps ^		
		actual	min o	a intake (cfm):	13210							
		actual	max	supply (cfm):	27000					Xs =	0.70035	
			minim	um oa fraction								
			AHL	J can supply	0.49							
			Ev=		0.73	System V	entilation E	fficiency				
				Vot=	10954							
				30% above	14240							

	1										
				AHU-4							
Room No.	Room Name	Occupancy Type	Area (sf)	Rp (cfm/person)	Ra (cfm/sf)	Pz (people)	Vbz (cfm)	Ez	Voz (cfm)	Vpz (cfm)	Zp
130/146	Competition Gymnasium	Multipurpose Assembly	8052		0.06				3784		0.2
130A	Gym Storage	Storage Rooms	366	0	0.12	0	44	1	. 44	180	0.24
106	Is Girls' Locker Room	Storage Rooms	345	0	0.12	0	42	1	. 42	350	0.12
108	Health Instructor's Office	Office Space	349	5	0.06	2	31	1	. 31	180	0.17
102	Is Boys' Locker Room	Storage Rooms	345	0	0.12	0	42	1	. 42	350	0.12
134	Hs Girls' Locker Room	Storage Rooms	470	0	0.12	0	57	1	. 57	420	0.14
144	Hs Boys' Locker Room	Storage Rooms	430	0	0.12	0	52	1	. 52	380	0.14
145	Visitor Team's Locker Room	Storage Rooms	270	0	0.12	0	33	1	. 33	180	0.18
230/240	Auxiliary Exercise Room	Health Club/Aerobics Room	1900	20	0.06	38	874	1	874	2000	0.44
						Vou	4959				
				AHU-4							
		actual	min o	a intake (cfm):	13360					Max Zp =	0.44
		actual	max:	supply (cfm):	20860					Ev =	0.7
			minim	um oa fraction	0.64						
				Vot=	7085						
				30% above	9211						

	AHU-4									
				% Above	Compliant	Above				
Room		Design	Minimum	Standard	With	30%				
Number	Room Name	Ventillation	Ventilation	62.1	Standard	(LEED)				
130/146	Competition Gymnasium	9633	3784	255	Yes	Yes				
130A	Gym Storage	115	44	262	Yes	Yes				
106	Is Girls' Locker Room	224	42	534	Yes	Yes				
108	Health Instructor's Office	115	31	372	Yes	Yes				
102	Is Boys' Locker Room	224	42	534	Yes	Yes				
134	Hs Girls' Locker Room	269	57	472	Yes	Yes				
144	Hs Boys' Locker Room	243	52	468	Yes	Yes				
145	Visitor Team's Locker Room	115	33	349	Yes	Yes				
230/240	Auxiliary Exercise Room	1281	874	147	Yes	Yes				

	AHU-5											
Room No.	Room Name	Occupancy Type	Area (sf)	Rp (cfm/person)	Ra (cfm/sf)	Pz	Vbz (cfm)	Ez	Voz (cfm)	Vpz (cfm)	Zp	Evz
338/356	Is Café	Cafeteria/fast food-dining	2530	7.5		172		1	1746	4920	0.35	0.96
534	Kitchen Complex	Cafeteria/fast food-dining	2174	7.5	0.18	16	512	1	512	3038	0.17	1.15
534C	Office 3	Office	125	5	0.06	1	13	1	13	75	0.17	1.14
534H	Food Storage	Storage	480	0	0.12	0	58	1	58	100	0.58	0.74
505/511	Hs Café	Cafeteria/fast food-dining	3150	7.5	0.18	210	2142	1	2142	5990	0.36	0.96
513, 515	Staff Dining & Servery	Cafeteria/fast food-dining	1027	7.5	0.18	8	245	1	245	600	0.41	0.91
536, 538	Men/Women Locker Room	Storage	320	0	0.12	0	39	1	39	250	0.16	1.16
534A	Can Wash	Storage	480	0	0.12	0	58	1	58	200	0.29	1.03
						Vou	4813			15173		
				AHU-5						Vpz ^		
		actual	min oa	intake (cfm):	11840							
		actual	max :	supply (cfm):	18700					Xs =	0.317208	
			minim	um oa fraction								
			AHU	can supply	0.63							
				Ev=		System V	entilation I	Efficiency				
				Vot=	6529							
				30% above	8488							

		AH	U-5			
					Compliant	Above
Room		Design	Minimum	% Above	With	30%
Number	Room Name	Ventillation	Ventilation	Standard 62.1	Standard	(LEED)
338/356	Is Café	3116	1746	178	Yes	Yes
534	Kitchen Complex	1924	512	376	Yes	Yes
534C	Office 3	48	13	369	Yes	Yes
534H	Food Storage	64	58	110	Yes	No
505/511	Hs Café	3793	2142	177	Yes	Yes
513	Staff Dining & Servery	380	245	155	Yes	Yes
536, 538	Men/Women Locker Room	159	39	408	Yes	Yes
534A	Can Wash	127	58	219	Yes	Yes

		I .									
				AHU-6							
Room No.	Room Name	Occupancy Type	Area (sf)	Rp (cfm/person)	Ra (cfm/sf)	Pz	Vbz (cfm)	Ez	Voz (cfm)	Vpz (cfm)	Zp
338/356	Auditorium	Auditorium Seating Area	3844	5	0.06	366	2061	1	2061	7488	0.28
360	Dress Room	Storage Room	190	0	0.12	0	23	1	23	150	0.15
362	Dress Room	Storage Room	190	0	0.12	0	23	1	23	150	0.15
406	Projection Room	Telephone/Data Entry	117	5	0.06	2	18	1	18	140	0.13
						Vou	2125				
				AHU-6							
		actual	min o	a intake (cfm):	6325					Max Zp =	0.28
		actual	max:	supply (cfm):	9600					Ev =	0.8
			minim	um oa fraction							
			AHU	J can supply	0.66						
				Vot=	2657						
				30% above	3454						

	1					
_		AHU	-6			
				% Above	Compliant	Above
Room		Design	Minimum	Standard	With	30%
Number	Room Name	Ventillation	Ventilation	62.1	Standard	(LEED)
338/356	Auditorium	4934	2061	239	Yes	Yes
360	Dress Room	99	23	430	Yes	Yes
362	Dress Room	99	23	430	Yes	Yes
406	Projection Room	93	18	517	Yes	Yes

Appendix D – Latent Load Calculation

			Latent Load	Total Latent	
		# of	of an	Load on	CFM Required
		People in	Occupant	Space	to Meet
Room No.	Room Name	Space	(Btu/hr)	(Btu/hr)	Latent Load
141	Custodian Storage	3	250	750	54
101	Is Project Room	35	200	7000	507
103	Is Project Room	35	200	7000	507
105	Is Art	54	250	13500	978
109A	Supervisor	2	200	400	29
107	Is Art Storage	1	250	250	18
	Corridor 1st Floor West	0	250	0	0
246	Medical Suite	6	250	1500	109
241	Custodian Shop	3	200	600	43
207B	Storage	0	200	0	0
205A	Office Work Room	3	200	600	43
207	Staff Development/Literacy Coaches	47	200	9400	681
207A	Office	1	200	200	14
205B	A/V Storage	0	200	0	0
205C	Tech Center	10	200	2000	145
205	Library	48	200	9600	696
242	Physical Therapy	4	250	1000	72
206	Office	2	200	400	29
209	Cw - Activities for Daily Living	12	200	2400	174
	Corridor 2nd Floor South	0	250	0	0
308	Guidance Suite	0	200	0	0
308A	Office	1	200	200	14
308B	Office	1	200	200	14
308D	Meeting	6	200	1200	87
301	Is Classroom	34	200	6800	493
303	Is Classroom	34	200	6800	493
305	Is Classroom	34	200	6800	493
307	Records	1	200	200	14
311	Gen Office	5	200	1000	72
315	Principal	3	200	600	43
309A	Waiting	6	200	1200	87
309	Mail	2	200	400	29
	Corridor 3rd Floor West	0	250		0
401	Hs Classroom	34	200	6800	493
403	Hs Classroom	31	200		
405	Hs Classroom	31	200		
407	Records	1	200		
411	Gen Office	5	200		
415	Principal	2	200		29
311A	Сору	1	200	200	
411A	Copy	1	200		
409	Mail	2	200		
409A	Waiting	6	200		
	Corridor 4th Floor West	0	250		0
524	Hs Receiving	2	200	400	29

	··-··				
522	Hs Receiving Vestibule	2	200	400	29
518	Hs College Suite	2	200	400	29
518A	Hs College Office	2	200	400	29
518B	Hs College Conference	5	200	1000	72
516	Hs Guidance Suite	3	200	600	43
516A	Hs Guidance Conf	6	200	1200	87
516B	Hs Guidance Office	2	200	400	29
516C	Hs Guidance Office	2	200	400	29
	Corridor 5th Floor East	0	250	0	0
508	Hs Supervisory	2	200	400	29
506	Mediation	4	200	800	58
245	Office	2	200	400	29
308B	Guidance Room	2	200	400	29
113	Hs Parents/Community Office	5	200	1000	72
115	Is Parents Coordinator Room	5	200	1000	72
L1C	Vestibule	0	200	0	0
126A	Furniture Storage	0	200	0	0
126B	Storage	0	200	0	0
126C	Vault W. Anteroom	0	200	0	0
119	Custodial Office	3	250	750	54
116	School Safety Office/Locker Rooms	3	200	600	43
118	Is Receiving Room	2	200	400	29
120	Is General Supply Room	0	200	0	0
	Corridor 1st Floor East	0	250	0	0
213	Special Education Classroom	25	200	5000	362
215	Special Education Classroom	25	200	5000	362
219	Special Education Classroom	25	200	5000	362
221	Special Education Classroom	25	200	5000	362
217	Special Education Clasroom	25	200	5000	362
225	Special Education Clasroom	31	200	6200	449
226	Special Education Clasroom	25	200	5000	362
224	Special Education Clasroom	26	200	5200	377
222	Hs Book Store	4	200	800	58
220	Classroom Speech	9	200	1800	130
218	Classroom Speech	9	200	1800	130
216	Is Book Store	4	200	800	58
214	Is Audio/Video Security Storage Room	0		0	0
	Corridor 2nd Floor East	0	250	0	0
318	Is Music	27	250	6750	489
318A	Is Music Storage	0	200	0	0
318B	Is Music Storage	0	200	0	0
318C	Is Music Storage	0	200	0	0
320	Is Resource	16	200	3200	232
322	Is Resource	15		3000	217
_	Corridor 3rd Floor East	0		0	0
324	Is Classroom	34		6800	493
325	Is Special Education	23	200	4600	333

	+ '		-	-	<u> </u>
323	Is Science Lab	30	200	6000	435
321	Is Science Prep	1	200	200	14
319	Is Science Lab	30	200	6000	435
317	Is Classroom	36	200	7200	522
	Corridor 4th Floor East	0	250	0	0
417	Hs Project Room	34	200	6800	493
419	Hs Project Room	34	200	6800	493
421	Hs Classroom	31	200	6200	449
423	Hs Classroom	35	200	7000	507
425	Hs Classroom	35	200	7000	507
424	Hs Classroom	34	200	6800	493
422	Hs Resource	17	200	3400	246
420	Hs Music Storage	0	200	0	0
418	Hs Music	23	200	4600	333
418A	Hs Music Storage	0	200	0	0
418B	Hs Music Storage	0	200	0	0
418C	Hs Music Storage	0	200	0	0
517	Hs Special Education	23	200	4600	333
519	Hs Science Lab	38		7600	551
521	Science Prep	5	200	1000	72
523	Science Lab Demo	30	200	6000	435
525	Science Lab Demo	30	200	6000	435
361	Is Classroom	30	200	6000	435
359	Is Classroom	30	200	6000	435
357	Is Classroom	30	200	6000	435
355	Is Classroom	30	200	6000	435
353	Is Classroom	39	200	7800	565
351	Is Classroom	30	200	6000	435
349	Is Classroom	30	200	6000	435
347	Is Special Education	21	200	4200	304
341	Is Staff Locker	0	250	0	0
541	Corridor 3rd Floor South	0	250	0	0
461	Hs Classroom	30	200	6000	435
459	Hs Classroom	30	200	6000	435
457	Hs Classroom	30	200	6000	435
455	Hs Classroom	30	200	6000	435
453	Hs Classroom	39		7800	565
451	Hs Classroom	31	200		449
449	Hs Classroom	31			449
449	Hs Special Education	12			174
441	Hs Staff Locker	0			0
441	Corridor 4th Floor South	0			0
	Corridor 5th Floor South	0			0
539		0			0
541	Men's Kitchen Locker Rooms	0			0
	Women's Kitchen Locker Rooms	_			
545	Guidance Records	1	200		14
547	Program Office	1	200	200	14

547A	Program Office	1	200	200	14
549	Hs Store	1	200	200	14
549A	Hs Store	1	200	200	14
551	Government & Club House	6	200	1200	87
551A	Government & Club Office	1	200	200	14
551B	Government & Club Office	1	200	200	14
552	Hs Art Room	52	250	13000	942

Appendix E – NYC Mechanical Code Ventilation

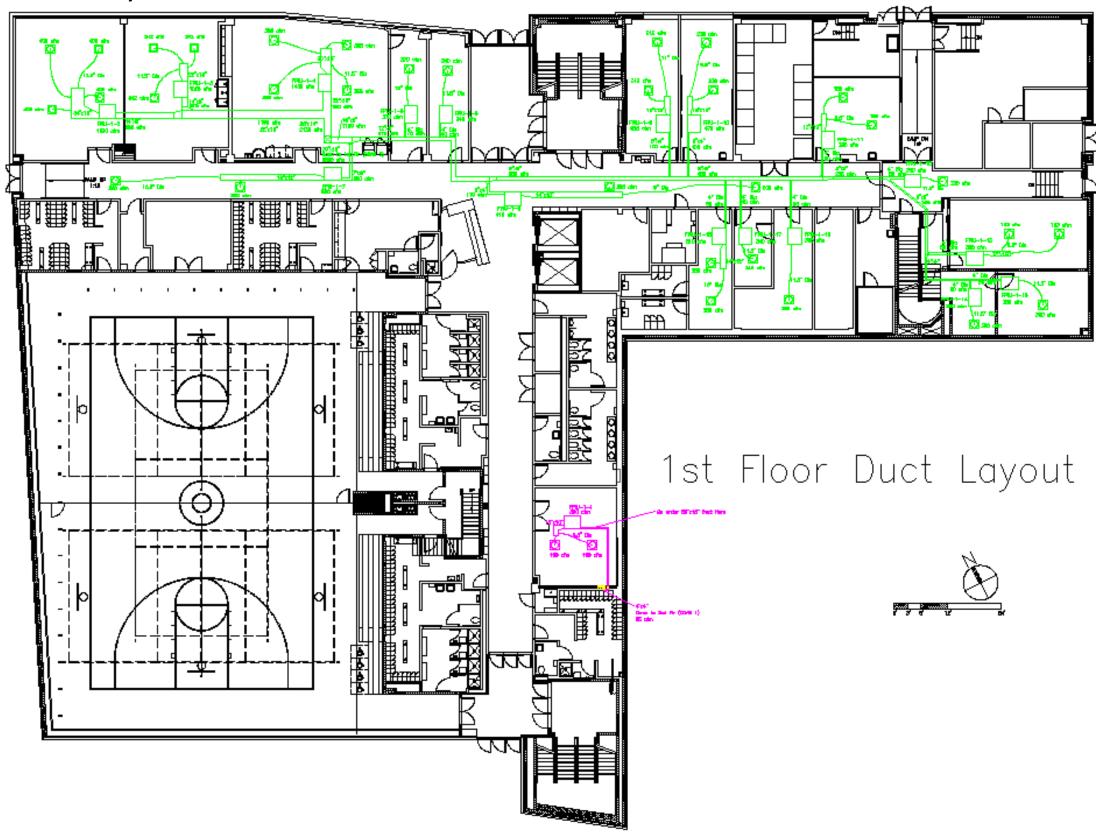
ì	n	ΛC	CENA	NIVC	Machanical	Code 2008
	1)()	AS		I - INIY(IVIechanicai	LOGE JUUX

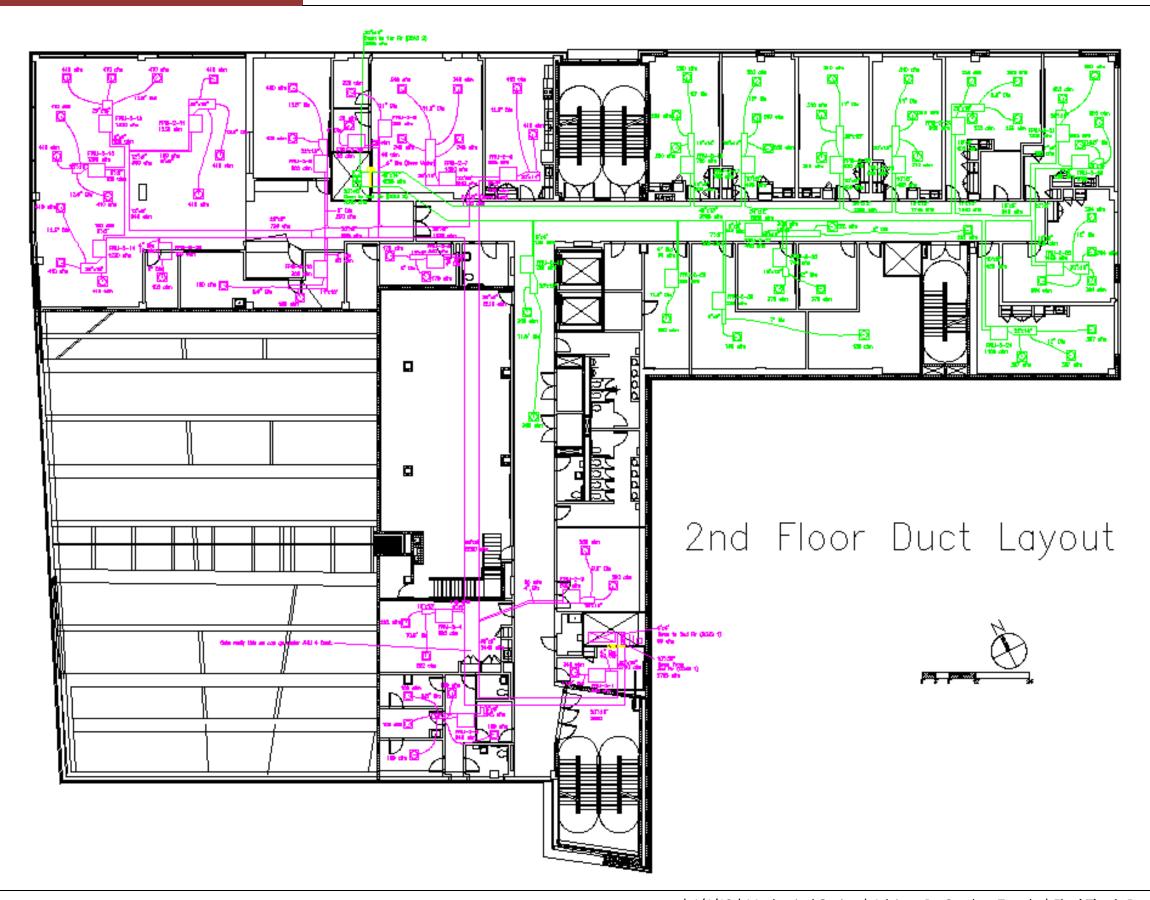
Room No.	Room Name	Occupancy Type	Area (sf)	Rp (cfm/person)		Pz	CFI
141	Custodian Storage	Classrooms	401		0	3	
101	Is Project Room	Classrooms (age 9 plus)	800	15	0	35	
103	Is Project Room	Classrooms (age 9 plus)	750	15	0	35	_
105	Is Art	Classroom	1088	15	0	54	
109A	Supervisor	Office Space	270	20	0	2	
107	Is Art Storage	Classroom	234	20	0	1	
	Corridor 1st Floor West	Corridors	2800	0	0.1	0	
246	Medical Suite	Patient rooms	702	25	0	6	
241	Custodian Shop	Classrooms	364	15	0	3	
207B	Storage	modeled as corridor	104	0	0.1	0	
205A	Office Work Room	Office Space	331	20	0	3	
207	Staff Development/Literacy Coach	Conference/meeting	954	20	0	47	
207A	Office	Office Space	77	20	0	1	
205B	A/V Storage	modeled as a corridor	89	0	0.1	0	
205C	Tech Center	Telecom	412	20	0	10	
205	Library	Libraries	3883	15	ō	48	
242	Physical Therapy	Patient Rooms	477	25	ō	4	
206	Office	Office Space	203	20	Ö	2	
209	Cw - Activities for Daily Living	Classrooms	500	15	ŏ	12	
200	Corridor 2nd Floor South	Corridors	1230	0	0.1	0	
308	Guidance Suite	modeled as a corridor	120	ŏ	0.1	0	
308A	Office	Office Space	150	20	0.1	1	\vdash
308B	Office	Office Space	128	20	0	1	_
308D	Meeting		150	20	0	6	
301	Is Classroom	Conference/meeting Classrooms	684	15	0	34	
303	Is Classroom	Classrooms	684	15	0	34	-
305	Is Classroom	Classrooms	688	15	0	34	_
307	Records	modeled as a Classroom	208	15	0	34	_
			494	20	_		-
311 315	Gen Office	Office Space	394	20	0	5	
	Principal	Office Space			0	3	
309A	Waiting	Reception areas	144	15	0	6	
309	Mail	Office Space	288	20	0	2	
151	Corridor 3rd Floor West	Corridors	1350	0	0.1	0	
401	Hs Classroom	Classrooms	680	15	0	34	
403	Hs Classroom	Classrooms	744	15	0	31	
405	Hs Classroom	Classrooms	752	15	0	31	_
407	Records	modeled as a classroom	208	15	0	1	
411	Gen Office	Office Space	494	20	0	5	
415	Principal	Office Space	394	20	0	2	_
311A	Сору	Office Space	144	20	0	1	<u> </u>
411A	Сору	Office Space	144	20	0	1	
409	Mail	Office Space	288				
409A	Waiting	Reception areas	144				
	Corridor 4th Floor West	Corridors	1350				
524	Hs Receiving	Office Space	428				
522	Hs Receiving Vestibule	Reception areas	386	15	0		
518	Hs College Suite	Office Space	180	20	0		
518A	Hs College Office	Office Space	110	20	0		
518B	Hs College Conference	Conference/meeting	114			5	

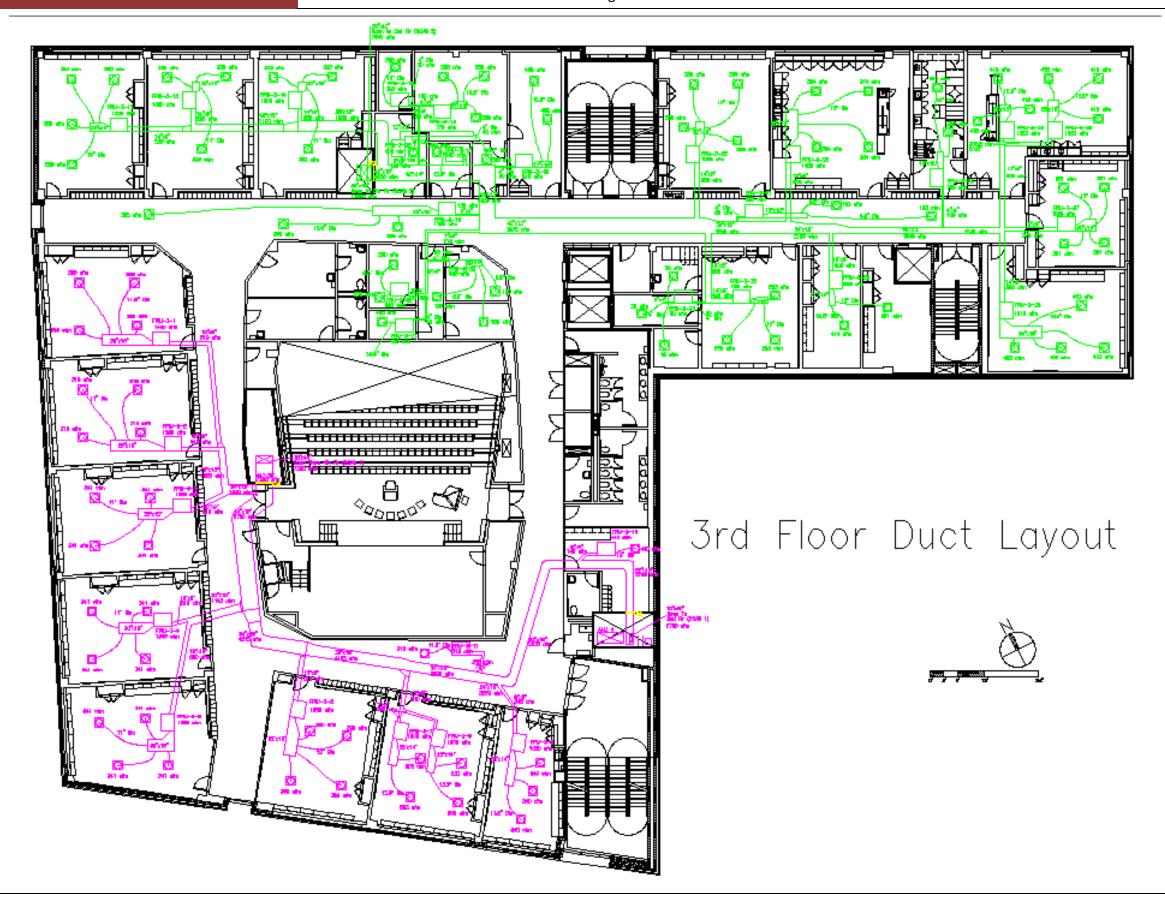
516	Hs Guidance Suite	Reception areas	194	15	0	3	45
516A	Hs Guidance Conf	Conference/meeting	110	20	Ö	6	120
516B	Hs Guidance Office	Office Space	120	20	0	2	40
516C	Hs Guidance Office	Office Space	120	20	0	2	40
3100	Corridor 5th Floor East	Corridors	2060	20	0.1	0	206
508			2000	20	0.1		40
506	Hs Supervisory	Office Space	99	20	0	2	
	Mediation	Conference/meeting			_	4	40
245	Office	Office Space	164	20	0	2	
308B	Guidance Room	Office Space	250	20	0	2	40
113	Hs Parents/Community Office	Office Space	400	20	0	5	100
115	Is Parents Coordinator Room	Office Space	400	20	0	5	100
L1C	Vestibule	Corridors	460	0	0.1	0	
126A	Furniture Storage	modeled as a corridor	512	0	0.1	0	
126B	Storage	modeled as a corridor	288	0	0.1	0	29
126C	Vault W. Anteroom	modeled as a corridor	300	0	0.1	0	
119	Custodial Office	Office Space	314	20	0	3	60
116	School Safety Office/Locker Rooms	Office Space	479	20	0	3	60
118	Is Receiving Room	Reception areas	153	20	0	2	40
120	Is General Supply Room	modeled as cooridor	333	0	0.1	0	34
	Corridor 1st Floor East	Corridors	1060	0	0.1	0	106
213	Special Education Classroom	Classrooms (age 9 plus)	496	15	0	25	375
215	Special Education Classroom	Classrooms (age 9 plus)	496	15	0	25	375
219	Special Education Classroom	Classrooms (age 9 plus)	496	15	0	25	375
221	Special Education Classroom	Classrooms (age 9 plus)	496	15	0	25	375
217	Special Education Clasroom	Classrooms	500	15	0	25	375
225	Special Education Clasroom	Classrooms	659	15	0	31	465
226	Special Education Clasroom	Classrooms	505	15	0	25	375
224	Special Education Clasroom	Classrooms	530	15	0	26	390
222	Hs Book Store	modeled as a Classroom	489	15	0	4	60
220	Classroom Speech	Classrooms	190	15	0	9	135
218	Classroom Speech	Classrooms	190	15	0	9	135
216	Is Book Store	modeled as Classroom	489	15	0	4	60
214	Is Audio/Video Security Storage Roo	modeled as Corridor	361	0	0.1	0	37
	Corridor 2nd Floor East	Corridors	1450	0	0.1	0	145
318	Is Music	Classrooms	536	15	0	27	405
318A	Is Music Storage	modeled as a corridor	103	0	0.1	0	11
318B	Is Music Storage	modeled as a corridor	126	0	0.1	0	
318C	Is Music Storage	modeled as a corridor	86	0	0.1	0	9
320	Is Resource	Classrooms	323	15	0	16	240
322	Is Resource	Classrooms	311	15	0	15	225
	Corridor 3rd Floor East	Corridors	830	0	0.1	0	83
324	Is Classroom	Classrooms	726	15	0	34	510
325	Is Special Education	Classrooms	467	15	0	23	345
323	Is Science Lab	Laboratories	903	20	ō	30	600
321	Is Science Prep	Laboratories	374				20
319	Is Science Lab	Laboratories	900	20			
317	Is Classroom	Classrooms	726	15			
- 311	Corridor 4th Floor East	Corridors	830				
417	Hs Project Room	Classrooms (age 9 plus)	768	15	0.1		510
419	Hs Project Room	Classrooms (age 3 plus)	768		0		
421	Hs Classroom	Classrooms (age 3 plus)	720				
423	Hs Classroom	Classrooms (age 3 plus)	720	15	0		
				15	0		
425	Hs Classroom	Classrooms (age 9 plus)	720				
424	Hs Classroom	Classrooms	685	15	0	34	510

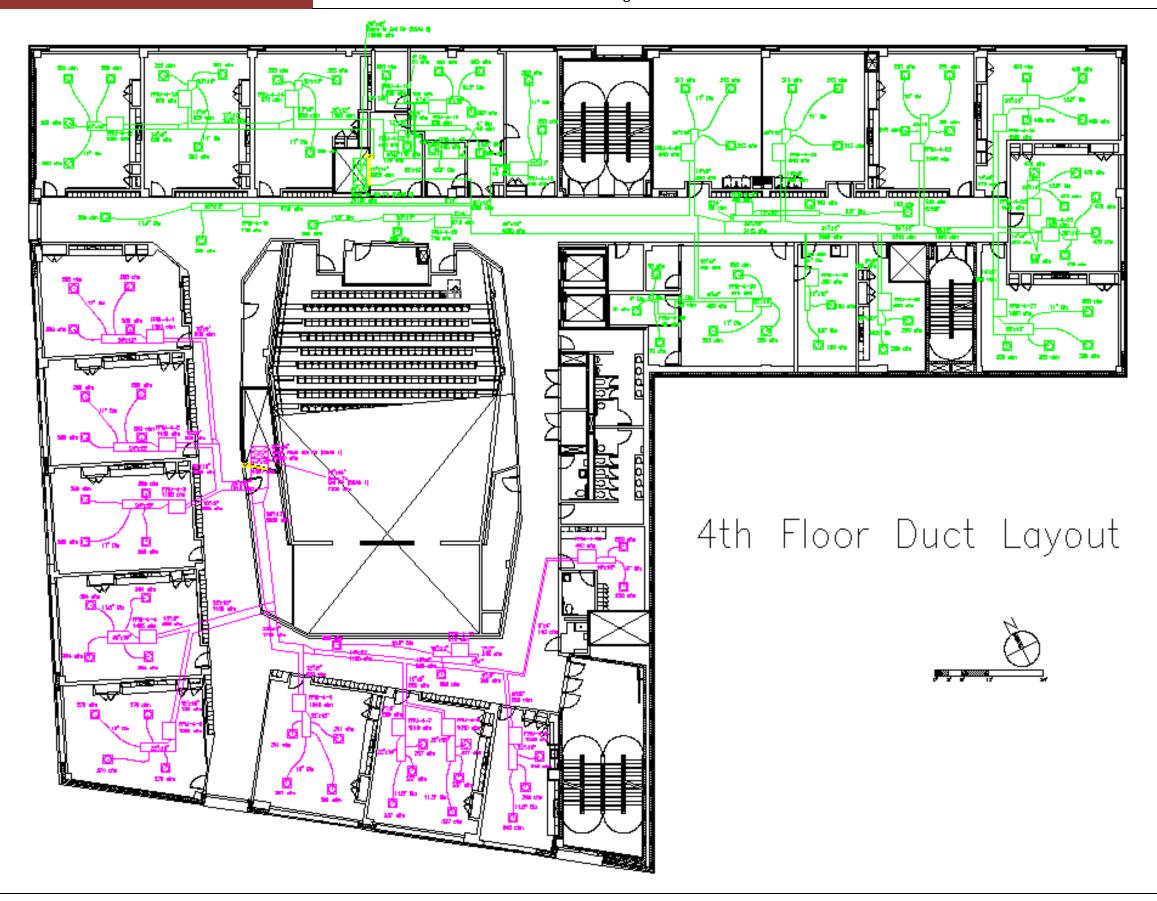
422	Hs Resource	Classrooms	356	15	0	17	255
420	Hs Music Storage	modeled as a corridor	383	0	0.1	0	39
418	Hs Music	Classrooms	947	15	0	23	345
418A	Hs Music Storage	modeled as a corridor	70	0	0.1	0	7
418B	Hs Music Storage	modeled as a corridor	120	0	0.1	0	12
418C	Hs Music Storage	modeled as a corridor	56	0	0.1	0	6
517	Hs Special Education	Classrooms	468	15	0	23	345
519	Hs Science Lab	Laboratories	1261	20	0	38	760
521	Science Prep	Laboratories	501	20	0	5	100
523	Science Lab Demo	Laboratories	996	20	0	30	600
525	Science Lab Demo	Laboratories	1010	20	0	30	600
361	ls Classroom	Classroom (age 9 plus)	740	15	0	30	450
359	Is Classroom	Classroom (age 9 plus)	768	15	0	30	450
357	Is Classroom	Classroom (age 9 plus)	768	15	0	30	450
355	Is Classroom	Classroom (age 9 plus)	768	15	0	30	450
353	Is Classroom	Classrooms	780	15	o	39	585
351	Is Classroom	Classroom (age 9 plus)	750	15	0	30	450
349	Is Classroom	Classroom (age 9 plus)	750	15	ō	30	450
347	Is Special Education	Classrooms	438	15	ō	21	315
341	Is Staff Locker	Lockerrooms	280	0	0.5	0	140
	Corridor 3rd Floor South	Corridors	3125	ō	0.1	ō	313
461	Hs Classroom	Classrooms	690	15	0	30	450
459	Hs Classroom	Classrooms	705	15	0	30	450
457	Hs Classroom	Classrooms	705	15	o	30	450
455	Hs Classroom	Classrooms	705	15	0	30	450
453	Hs Classroom	Classrooms	780	15	o	39	585
451	Hs Classroom	Classroom (age 9 plus)	720	15	ol	31	465
449	Hs Classroom	Classroom (age 9 plus)	720	15	o	31	465
447	Hs Special Education	Classrooms	389	15	ō	12	180
441	Hs Staff Locker	Lockerrooms	280	0	0.5	0	140
	Corridor 4th Floor South	Corridors	3125	0	0.1	0	313
	Corridor 5th Floor South	Corridors	1540	0	0.1	0	154
539	Men's Kitchen Locker Rooms	locker rooms	165	0	0.5	0	83
541	Women's Kitchen Locker Rooms	Lockerrooms	165	0	0.5	0	83
545	Guidance Records	Office Space	165	20	0	1	20
547	Program Office	Office Space	110	20	ōl	1	20
547A	Program Office	Office Space	110	20	ō	1	20
549	Hs Store	modeled as a classroom	200	15	ō	1	15
549A	Hs Store	modeled as a classroom	110	15	ō	1	15
551	Government & Club House	Office Space	240	20	ō	6	120
551A	Government & Club Office	Office Space	96	20	Ö	1	20
551B	Government & Club Office	Office Space	96	20	ő	- i l	20
552	Hs Art Room	Classrooms	1051	15	Ö	52	780
	/ /		,001	10	۹	total	33269

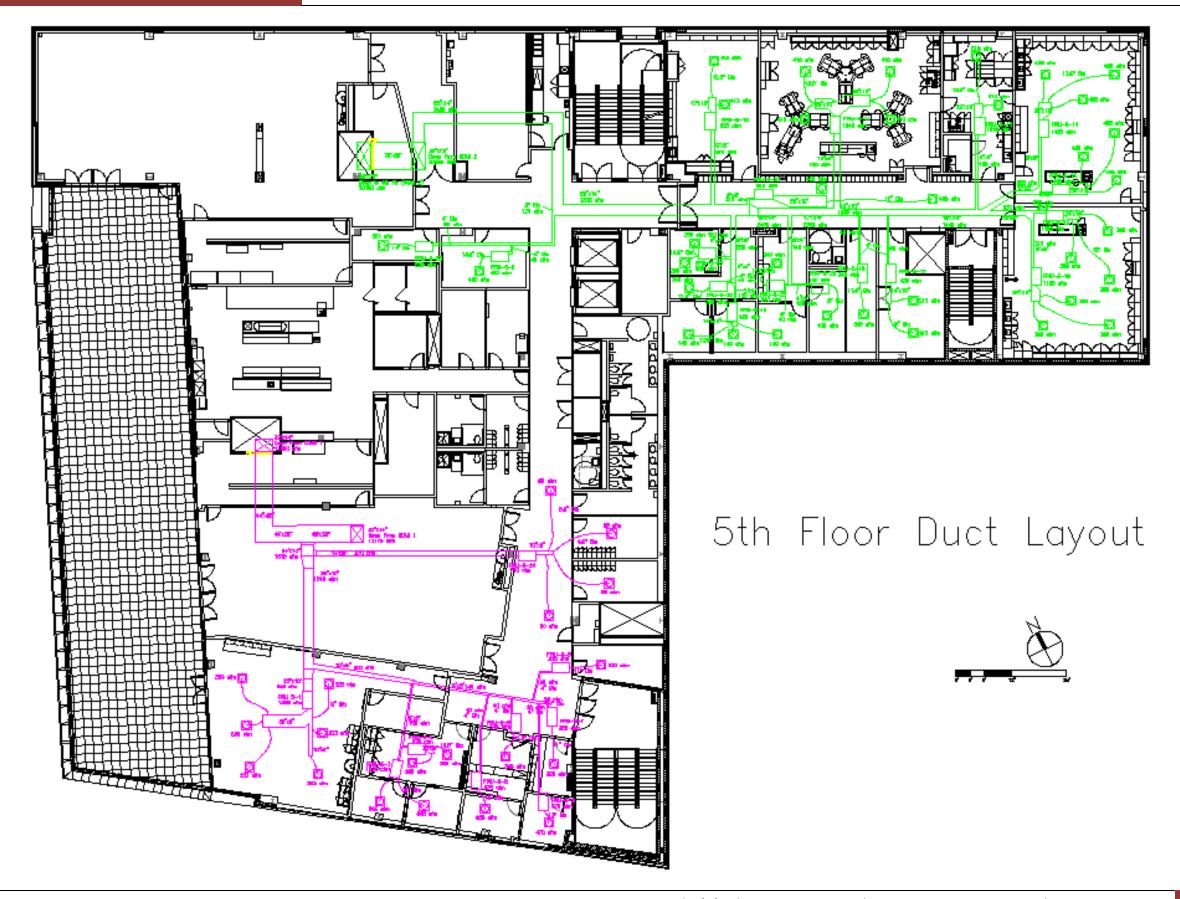
Appendix F – Comparing Ventilation Requirements


		NYS	30% above		Max	Round Up to
		Mechancial	ASHRAE Std	Latent	Required	a multiple of
Room No.	Room Name	Code	62.1	Load	CFM	5 CFM
101	Is Project Room	525	580	507	580	580
103	Is Project Room	525	572	507	572	575
105	Is Art	810	957	978	978	980
107	Is Art Storage	20	69	18	69	70
113	Hs Parents/Community Office	100	64	72	100	100
115	Is Parents Coordinator Room	100	64	72	100	100
116	School Safety Office/Locker Rooms	60	57	43	60	60
118	Is Receiving Room	40	26	29	40	40
119	Custodial Office	60	44	54	60	60
120	Is General Supply Room	34	52	0	52	55
141	Custodian Storage	45	64	54	64	65
205	Library	720	615	696	720	720
206	Office	40	30	29	40	40
207	Staff Development/Literacy Coaches	940	761	681	940	940
209	Cw - Activities for Daily Living	180	234	174	234	235
213	Special Education Classroom	375	403	362	403	405
214	Is Audio/Video Security Storage Room	37	57	0	57	60
215	Special Education Classroom	375	403	362	403	405
216	Is Book Store	60	129	58	129	130
217	Special Education Clasroom	375	403	362	403	405
218	Classroom Speech	135	147	130	147	150
219	Special Education Classroom	375	403	362	403	405
220	Classroom Speech	135	147	130	147	150
221	Special Education Classroom	375	403	362	403	405
222	Hs Book Store	60	129	58	129	130
224	Special Education Clasroom	390	421	377	421	425
225	Special Education Clasroom	465	507	449	507	510
226	Special Education Clasroom	375	404	362	404	405
241	Custodian Shop	45	48	43	48	50
242	Physical Therapy	100	142	72	142	145
245	Office	40	26	29	40	40
246	Medical Suite	150	243	109	243	245
301	Is Classroom	510	550	493	550	550
303	Is Classroom	510	550	493	550	550
305	Is Classroom	510	550	493	550	550
307	Records	15	33	14	33	35
308	Guidance Suite	12	10	0	12	15
309	Mail	40	36	29	40	40
311	Gen Office	100	72	72	100	100
315	Principal	60	51	43	60	60
317	Is Classroom	540	582	522	582	585
318	Is Music	405	436	489	489	490


	+	1				
319	Is Science Lab	600	601	435	601	605
320	Is Resource	240	259	232	259	260
321	Is Science Prep	20	101	14	101	105
322	Is Resource	225	244	217	244	245
323	Is Science Lab	600	602	435	602	605
324	Is Classroom	510	556	493	556	560
325	Is Special Education	345	373	333	373	375
341	Is Staff Locker	140	44	0	140	140
347	Is Special Education	315	342	304	342	345
349	Is Classroom	450	507	435	507	510
351	Is Classroom	450	507	435	507	510
353	Is Classroom	585	629	565	629	630
355	Is Classroom	450	511	435	511	515
357	Is Classroom	450	511	435	511	515
359	Is Classroom	450	511	435	511	515
361	Is Classroom	450	506	435	506	510
401	Hs Classroom	510	549	493	549	550
403	Hs Classroom	465	520	449	520	520
405	Hs Classroom	465	521	449	521	525
407	Records	15	33	14	33	35
409	Mail	40	36	29	40	40
411	Gen Office	100	72	72	100	100
415	Principal	40	44	29	44	45
417	Hs Project Room	510	563	493	563	565
418	Hs Music	345	447	333	447	450
419	Hs Project Room	510	563	493	563	565
420	Hs Music Storage	39	60	0	60	60
421	Hs Classroom	465	516	449	516	520
422	Hs Resource	255	277	246	277	280
423	Hs Classroom	525	568	507	568	570
424	Hs Classroom	510	550	493	550	550
425	Hs Classroom	525	568	507	568	570
441	Hs Staff Locker	140	44	0	140	140
447	Hs Special Education	180	217	174	217	220
449	Hs Classroom	465	516	449	516	520
451	Hs Classroom	465	516	449	516	520
453	Hs Classroom	585	629	565	629	630
455	Hs Classroom	450	501	435	501	505
457	Hs Classroom	450	501	435	501	505
459	Hs Classroom	450	501	435	501	505
461	Hs Classroom	450	498	435	498	500
506	Mediation	80	34	58	80	80
508	Hs Supervisory	40	31	29	40	40
516	Hs Guidance Suite	45	35	43	45	45


	1					l
517	Hs Special Education	345	373	333		375
518	Hs College Suite	40	27	29		40
519	Hs Science Lab	760	789	551	789	790
521	Science Prep	100	183	72	183	185
522	Hs Receiving Vestibule	30	44	29	44	45
523	Science Lab Demo	600	624	435	624	625
524	Hs Receiving	40	47	29	47	50
525	Science Lab Demo	600	627	435	627	630
539	Men's Kitchen Locker Rooms	83	26	0	83	85
541	Women's Kitchen Locker Rooms	83	26	0	83	85
545	Guidance Records	20	20	14	20	20
547	Program Office	20	16	14	20	20
549	Hs Store	15	44	14	44	45
551	Government & Club House	120	59	87	120	120
552	Hs Art Room	780	923	942	942	945
109A	Supervisor	40	35	29	40	40
126A	Furniture Storage	52	81	0	81	85
126B	Storage	29	46	0	46	50
126C	Vault W. Anteroom	30	47	0	47	50
205A	Office Work Room	60	46	43	60	60
205B	A/V Storage	9	14	0	14	15
205C	Tech Center	200	195	145	200	200
207A	Office	20	13	14	20	20
207B	Storage	11	17	0	17	20
308A	Office	20	18	14	20	20
308B	Office	20	17	14	20	20
308B	Guidance Room	40	33	29	40	40
308D	Meeting	120	51	87	120	120
309A	Waiting	90	51	87	90	90
311A	Сору	20	18	14	20	20
318A	Is Music Storage	11	17	0	17	20
318B	Is Music Storage	13	21	0	21	25
318C	Is Music Storage	9	14	0	14	15
409A	Waiting	90	51	87	90	90
411A	Сору	20	18	14	20	20
418A	Hs Music Storage	7	12	0	12	15
418B	Hs Music Storage	12	20	0	20	20
418C	Hs Music Storage	6	9	0	9	10
516A	Hs Guidance Conf	120		87	120	120
516B	Hs Guidance Office	40		29		40
516C	Hs Guidance Office	40		29		40
518A	Hs College Office	40		29		40
518B	Hs College Conference	100		72	100	100
547A	Program Office	20				20
549A	Hs Store	15		14		35
551A	Government & Club Office	20		14		20
		_				
551B	Government & Club Office	20	14	14	20	20


	1	1			1	1
L1C	Vestibule	46	36	0	46	50
	Corridor 1st Floor West	280	218	0	280	280
	Corridor 2nd Floor South	123	96	0	123	125
	Corridor 3rd Floor West	135	105	0	135	135
	Corridor 4th Floor West	135	105	0	135	135
	Corridor 5th Floor East	206	161	0	206	210
	Corridor 1st Floor East	106	83	0	106	110
	Corridor 2nd Floor East	145	113	0	145	145
	Corridor 3rd Floor East	83	65	0	83	85
	Corridor 4th Floor East	83	65	0	83	85
	Corridor 3rd Floor South	313	244	0	313	315
	Corridor 4th Floor South	313	244	0	313	315
	Corridor 5th Floor South	154	121	0	154	155


Appendix G – New Duct Layouts

Appendix H – ESP Supply Fan DOAS 1

Type			Air velocity		Duct (inches x		Friction Loss (in. wg per 100 ft	FRICTION	2009 Fundamentals	Pv (velocity	C (local loss	DYNAMIC
2 Control Changer 100 167 170 1675 32 + 44 0 0 0 0 23,57/CF00 0.03 0.15 0.04 4 Dist A CHOR 15 This 1670 1677 32 + 48 0 0 0 0 23,57/CF00 0.03 0.15 0.05 5 5 5 5 5 5 5 5 5	ction Type	Run type		Q (cfm)		Length of Run (ft)						LOSSES (in wg)
One control company (FSG) See	1 Fan Discharge	n/a	1700	14975	32 x 44	0	0	0		0.18	0	0.18
1 December 1970 December 1970 1975 12 + 44 0 0 0 0 2,15/70506 0.38 0.35 0.05	2 Control Damper	n/a	1700	14975	32 x 44	0	0	0	21.57/CR9-4	0.18	0.18	0.0324
Secretary Secr		-										0.0342
9 Dee (Elbow with Viene Mark 1500 15979 22 4 84 0							_		21.57/CR9-6			0.0542
Section Sect									21.54/CR3-12			0.0594
Piet Francisco Mein												0
9 Deep Elbow with Vames Mark 1500 1500 44 9 32 0 0 0 0 2 15.57(19-12 0.14 0.33 0.1		Main	1500				0	0	21.63/SR5-5	0.14	0.019	0.00266
10 Dec. Shiff Mark 1500 1500 44 92 150 0.050 0.01579 0.14 0.15 0.1	8 Duct - 5th Flr	Main	1500	13090	44 x 32	9	0.065	0.00585		0.14		
15 Inc. stonde Emery (FSD) Mode 100 13000 44 × 32 0 0 0 21.57/CR9-6 0.12 0.30 0.30 0.4 × 32 0 0 0 0 21.57/CR9-6 0.12 0.30									21.54/CR3-12			0.0462
10 Deep Blow with Yanes Main to Riser 1700 13000 124 151 0.00 0.0155 0.18 0.03 0.14 151 0.00 0.0155 0.18 0.03 0.14 151 0.00 0.0155 0.18 0.03 0.01 0.015												0
10 Det - 15 Det												0.0266
10 Text Personalision 10 10 12.64/985-33 0.18 0.032 0.000 0.									21.54/CR3-12			0.0594
15 Dat 1 Arth 10 Art of Fire 18 Nort of									21 64/SR5-13			0.004176
15 Doug Blow with Vanes Mark Mark 1500 1212 4 x 20 6.5 0.09 0.00885 0.14 0.3 0.15 15 15 15 15 15 15 15									21.04/313-13			0.004170
10 Dec. 3-64 Fir Main 1500 1225 42 x 20 0 0 0 0 2 1517/(170-6 0.14 0.03 0.03 0.03 0.03 0 0 0 1517/(170-6 0.14 0.04 0.04 0.05 0 0 0 0 0 0 0 0 0									21.54/CR3-12			0.0462
10 Ter Familton Main 1500 6385 48 15 0 0 0 0 21,64/85-13 0.14 0.044 0.02		Main	1500			6.5	0.09			0.14	0	0
20 Dec 10 Dec	18 Fire Smoke Damper (FSD)	Main	1500	8125	44 x 20	0	0	0	21.57/CR9-6	0.14	0.19	0.0266
22 Dect - 3-3 of Fir												0.00616
22 Deck 95 Deg Main 1500 6385 44 x 16 0 0 0 0 2.157(RS-1 0.14 0.07									21.52/CR3-1			0.02198
23 Dut -3-d Fir Mahn									04 50 (000			0
24 Text multiden Main 1500 5050 34 x 16									21.52/CR3-1			0.02198
25 Dec. 25									21 64/585-12			0.00504
26 Dec wo One Main 1500 5000 34 x 16 0 0 0 21.57(R3-1) 0.34 0.25 0 0 2 0 0 2 0 0 0 2 0 0									21.04/383-13			0.00304
27 Out - 3 rd Fif Main 1500 5050 34 x 16 10.5 0.12 0.0126 0.14 0 0 0 0 0 0 0 0 0									21.52/CR3-1			0.035
28 Set Transition Main 1500 4470 30 × 16 23 0.12 0.0276 0.14 0.04 0.05												0
10 10 10 10 10 10 10 10									21.64/SR5-13		0.041	0.00574
31 Dec 2 and Fir	29 Duct - 3rd Flr	Main	1500	4470	30 x 16	23	0.12	0.0276		0.14	0	0
32 Ter Transition Main 1500 3575 24 x 16 4.5 0.4 0.0065 0.44 0.04 0.33 0.44 0.04 0.34 0.34 0.35 0.45 0.46 0.34 0.35 0.46 0.35 0.46 0.36 0.46 0.36 0.46 0.36 0.46 0.36 0.36 0.46 0.36 0.36 0.46 0.36 0.36 0.46 0.36 0.36 0.46 0.36 0.36 0.46 0.36 0.36 0.46 0.37 0.36 0.46 0.37 0.36 0.46 0.37 0.36 0.46 0.37 0.36 0.46 0.37 0.36 0.46 0.37 0.36 0.46 0.37 0.36 0.46 0.37 0.37 0.36 0.46 0.37 0.3	30 Tee Transition	Main	1500	3890	26 x 16	0	0	0	21.64/SR5-13	0.14	0.042	0.00588
33 Duct - 3rd Fif Main												0
Second Diversion Second Dive									21.64/SR5-13			0.00546
35 90 beg Bebow Main 1500 3165 22 x 16 0 0 0 0 1.52/CR3-1 0.14 0.232 0.03												0
96 Duct - 3rd Fir		1	1					1	-			0.01862 0.03248
37 90 Deg Blow Main 1500 3165 22 x 16 18 0.14 0.025 0.014 0.023 0.015 0.014 0.023 0.015 0.014 0.025 0.025									-			0.03248
38 Duct - 3rd Fir Main												0.03248
93 We 45 Deg Diverging Main 1500 3025 22 x 16 0 0 0 0 0 21.43/SD5-1 0.14 0.146 0.024 40 90 Deg Ilbow Main 1500 3025 22 x 16 0 0 0 0 0 21.52/CR3-1 0.14 0.023 0.01 41 Duck hum Main 1500 3025 22 x 16 0 0 0 0 0 21.53/CR3-1 0.14 0.03 0.01 42 Fire Smoke Damper (FSD) Main 1500 3025 22 x 16 0 0 0 0 0 21.53/CR3-1 0.18 0.39 0.01 43 90 Deg Blbow Main 1500 3025 10 x 30 0 0 0 0 0 0 21.53/CR3-1 0.18 0.39 0.01 44 Duct - 3rd to 2 nd Fir Riser 1700 3025 10 x 30 0							0.14	0.0252				0
42 Duct Rum Main 1500 3025 22 x 16	39 Wye 45 Deg Diverging	Main	1500	3025	22 x 16		0	0	21.49/SD5-1	0.14	0.146	0.02044
12 File Smoke Damper (FSD) Main 1500 3025 22 x 16 0 0 0 0 21.57/CR9-6 0.14 0.19 0.04 0.19 0.04 0.15	40 90 Deg Elbow	Main		3025	22 x 16		0				0.232	0.03248
93 90 Deg Elbow Main to Riser 1700 3025 10 x 30 14 0.2 0.028 0.18 0.33 0.04												0
44 Duct 3rd to 2nd Fir Riser 1700 3025 10 x 30 14 0.2 0.028 0.18 0 0 0 0 0 0 0 0 0												0.0266
45 Tee Transition Riser												0.0594
46 Fire Smoke Damper (FSD) Main 1500 2950 22 x 16 0 0 0 0 21.57/CR9-6 0.14 0.19 0.4 4 78 Balancing Damper Main 1500 2950 20 x 16 0 0 0 0 21.57/CR9-4 0.14 0.18 0.4 48 Duct - 2nd Fir Main 1500 2950 20 x 16 14 0.16 0.0224 0.14 0.18 0.4 49 Tee Transition Main 1500 2950 20 x 16 0 0 0 0 21.64/SR5-13 0.14 0.025 0.4 50 90 Deg Elbow Main 1500 2910 20 x 16 0 0 0 0 21.64/SR5-13 0.14 0.226 0.05 15 Duct - 2nd Fir Main 1500 2910 20 x 16 0 0 0 0 21.52/CR3-1 0.14 0.226 0.05 15 Duct - 2nd Fir Main 1500 2910 20 x 16 33.5 0.16 0.0536 0 0 0 21.64/SR5-13 0.14 0.226 0.05 15 Duct - 2nd Fir Main 1500 2910 20 x 16 33.5 0.16 0.0536 0 0 0 21.64/SR5-13 0.14 0.044 0.00 15 Tee Transition Main 1500 2665 38 x 8 0 0 0 0 0 21.64/SR5-13 0.14 0.044 0.00 15 Tee Transition Main 1500 2665 38 x 8 0 0 0 0 0 21.52/CR3-1 0.14 0.27 0.0 15 Duct - 2nd Fir Main 1500 2665 38 x 8 0 0 0 0 0 21.64/SR5-13 0.14 0.27 0.0 15 Duct - 2nd Fir Main 1500 2665 38 x 8 0 0 0 0 0 21.64/SR5-13 0.14 0.27 0.0 15 Duct - 2nd Fir Main 1500 2665 38 x 8 0 0 0 0 0 21.64/SR5-13 0.14 0.27 0.0 15 Duct - 2nd Fir Main 1500 2665 38 x 8 0 0 0 0 0 21.63/SR5-5 0.14 0.044 0.00 15 Duct - 2nd Fir Main 1500 2665 38 x 8 0 0 0 0 0 21.63/SR5-5 0.14 0.044 0.00 15 Duct - 2nd Fir Main 1500 2460 38 x 8 0 0 0 0 0 21.63/SR5-5 0.14 0.0084 0.00 15 Duct - 2nd Fir Branch 1000 1245 28 x 8 0 0 0 0 0 21.63/SR5-5 0.14 0.0084 0.00 15 Duct - 2nd Fir Branch 1000 1245 28 x 8 0 0 0 0 0 21.64/SR5-13 0.06 0 0 Duct - 2nd Fir Branch 1000 1205 26 x 8 0 0 0 0 0 21.64/SR5-13 0.06 0 Duct - 2nd Fir Branch 1000 945 20 x 8 0 0 0 0 0 21.64/SR5-13 0.06 0 Duct - 2nd Fir Branch 1000 945 20 x 8 0 0 0 0 0 21.64/SR5-13 0.06 0.023 0.06 0 Duct - 2nd Fir Branch 1000 945 20 x 8 0 0 0 0 0 21.64/SR5-13 0.06 0.06 0 Duct - 2nd Fir Branch 1000 945 20 x 8 0 0 0 0 0 21.64/SR5-13 0.06 0.06 0 Duct - 2nd Fir Branch 1000 945 20 x 8 0 0 0 0 0 21.64/SR5-13 0.06 0.06 0 Duct - 2nd Fir Branch 1000 945 20 x 8 9 0.01 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												0.135
A7 Balancing Damper Main 1500 2950 20 x 16 0 0 0 0 21.57/CR9-4 0.14 0.18 0.04												0.0266
48 Duct - 2nd Fir Main 1500 2950 20 x 16 14 0.16 0.0224 0.14 0 0 0 0 0 21.64/SR5-13 0.14 0.025 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												0.0250
49 Tee Transition Main 1500 2910 20 x 16 0 0 0 0 21.64/SR5-13 0.14 0.025 0.05 0 0 0 0 0 EB (Dow Main 1500 2910 20 x 16 0 0 0 0 0 21.52/CR3-1 0.14 0.226 0.05 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					-	1		-				0
St Duct - 2nd Fir Main 1500 2910 20 x 16 33.5 0.16 0.0536 0.14 0.04 0.04 0.04 0.05 0									21.64/SR5-13			0.0035
S2 Tee Transition Main 1500 2665 38 x 8 0 0 0 0 21.64/SR5-13 0.14 0.044 0.005 0.05				2910	20 x 16						0.226	0.03164
Sample S												0
54 Duct - 2nd Fir Main 1500 2665 38 x 8 0 0 0 0 0 21.49/505-1 0.14 0.1423 0.011 55 Wye 45 Deg Diverging Main 1500 2605 38 x 8 0 0 0 0 0 21.49/505-1 0.14 0.1423 0.011 56 Tee Transition Main 1500 2460 38 x 8 0 0 0 0 0 21.63/585-5 0.14 0.0084 0.000 57 Tee Transition Main 1500 2420 38 x 8 0 0 0 0 0 21.63/585-5 0.14 0.0024 0.000 58 Tee Transition Main 1000 1245 28 x 8 0 0 0 0 0 21.64/585-13 0.06 1.54 0.000 59 Duct - 2nd Fir Branch 1000 1245 28 x 8 20.5 0.17 0.03485 0.06 0 0 0 0 21.64/585-13 0.06 0.023 0.000 61 Duct - 2nd Fir Branch 1000 1205 26 x 8 0 0 0 0 0 21.64/585-13 0.06 0.023 0.000 61 Duct - 2nd Fir Branch 1000 1205 26 x 8 12 0.19 0.0228 60 Tee Transition Branch 1000 1205 26 x 8 12 0.19 0.0228 60 Tee Transition Branch 1000 945 20 x 8 0 0 0 0 0 21.50/505-24 0.06 0.03 61 Duct - 2nd Fir Branch 1000 945 20 x 8 28 0 0 0 0 0 21.50/505-24 0.06 0.03 63 Duct - 2nd Fir Branch 1000 945 20 x 8 28 0.11 0.0308 64 Tee Transition Branch 1000 930 20 x 8 0 0 0 0 0 21.64/585-13 0.06 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						-						0.00616
Standard Standard									21.52/CR3-1			0.0378
56 Tee Transition Main 1500 2460 38 x 8 0 0 0 21.63/SR5-5 0.14 0.0084 0.007 57 Tee Transition Main 1500 2420 38 x 8 0 0 0 0 21.63/SR5-5 0.14 0.0024 0.000 59 Duct - 2nd Fir Branch 1000 1245 28 x 8 20.5 0.17 0.03485 0.06 0 60 Tee Transition Branch 1000 1255 26 x 8 0 0 0 21.64/SR5-13 0.06 0 60 Tee Transition Branch 1000 1205 26 x 8 0 0 0 21.64/SR5-13 0.06 0 61 Duct - 2nd Fir Branch 1000 1205 26 x 8 12 0.19 0.0228 0.06 0 0 62 SD5-24 Cross, Diverging Branch 1000 945 20 x 8 0 0 0 21.64/SR5-13 0.06 0.135 0.0 63 Duct - 2nd Fir									24 40 (005 1			0.040022
57 Tee Transition Main 1500 2420 38 x 8 0 0 0 21.63/SR5-5 0.14 0.0024 0.000 58 Tee Transition Main to Branch 1000 1245/28 x 8 0 0 0 21.64/SR5-13 0.06 1.54 0.01 59 Duct - 2nd Fir Branch 1000 1245/28 x 8 20.5 0.17 0.03485 0.06 0 60 Tee Transition Branch 1000 1205/26 x 8 20.5 0.17 0.03485 0.06 0 61 Duct - 2nd Fir Branch 1000 1205/26 x 8 12 0.19 0.0228 0.06 0 62 SD5-24 Cross, Diverging Branch 1000 945/20 x 8 0 0 0 21.50/SD5-24 0.06 0 63 Duct - 2nd Fir Branch 1000 945/20 x 8 28 0.11 0.038 0.06 0 64 Tee Transition Branch 1000 930/20 x 8 28 0.11 0.0388 0.06 0 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>0.019922 0.001176</td></tr<>							_					0.019922 0.001176
58 Tee Transition Main to Branch 1000 1245 28 x 8 0 0 0 21.64/SR5-13 0.06 1.54 0.0 59 Duct - 2nd Fir Branch 1000 1245 28 x 8 20.5 0.17 0.03485 0.06 0 60 Tee Transition Branch 1000 1205 26 x 8 0 0 0 21.64/SR5-13 0.06 0.023 0.00 61 Duct - 2nd Fir Branch 1000 1205 26 x 8 12 0.19 0.0228 0.06 0 0.06 0 0 0 21.64/SR5-13 0.06 0 0.06 0 0 0.06 0 0 0.06 0 0.06 0 0 0 0 0.0228 0.06 0 0 0 0 0 0.05 0 0 0 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0												0.001176
59 Duct - 2nd Fir Branch 1000 1245 28 x 8 20.5 0.17 0.03485 0.06 0 0 0 0 1205 26 x 8 0 0 0 0 0 21.64/\$R5-13 0.06 0.023 0.00 0 0 1205 26 x 8 0 0 0 0 0 21.64/\$R5-13 0.06 0.023 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						0	0					0.000330
60 Tee Transition Branch 1000 1205 26 x 8 0 0 0 0 21.64/SR5-13 0.06 0.023 0.00 61 Duct - 2nd Fir Branch 1000 1205 26 x 8 12 0.19 0.0228 0.06 0 0 63 Duct - 2nd Fir Branch 1000 945 20 x 8 0 0 0 0 0 21.50/SD5-24 0.06 0 1.35 0.4 63 Duct - 2nd Fir Branch 1000 945 20 x 8 28 0.11 0.0308 0.06 0 0 64 Tee Transition Branch 1000 930 20 x 8 0 0 0 0 21.64/SR5-13 0.06 0.67 0.4 65 Duct - 2nd Fir Branch 1000 930 20 x 8 9 0.11 0.0099 0.06 0 0 66 FPIU Inlet 0 0 0 0 0 1.64/SR5-13 0.06 0.67 0.06 67 FPIU Inlet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						20.5	0.17					0
62 SD5-24 Cross, Diverging Branch 1000 945 20 x 8 0 0 0 0 21.50/SD5-24 0.06 0.135 0.06 63 Duct - 2nd Fir Branch 1000 945 20 x 8 28 0.11 0.0308 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 Tee Transition											0.00138
63 Duct - 2nd Fir Branch 1000 945 20 x 8 28 0.11 0.0308 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Branch										0
64 Tee Transition Branch 1000 930 20 x 8 0 0 0 0 21.64/SR5-13 0.06 0.67 0.4 65 Duct - 2nd Fir Branch 1000 930 20 x 8 9 0.11 0.009 0.06 0 66 FPIU Inlet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												0.0081
65 Duct - 2nd Fir Branch 1000 930 20 x 8 9 0.11 0.0099 0.06 0 6 FPIU Inlet 0 0 0 0 0 Total E.S.P.: 2.409165 in. wg												0
66 FPIU Inlet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												0.0402
0.632175 in. wg 1.7: Total E.S.P.: 2.409165 in. wg		Branch	1000	930	20 x 8					0.06	0	0
Total E.S.P.: 2.409165 in. wg	oo FPIU INIET					0	0					0.5 1.77699
								0.0321/5	III. Wg			1.77699
										Total E.S.P. :	2.409165	in. wg
Cofety France of or												
Salety Factor = 15 %										Safety Factor =	15	%

Appendix I – ESP Return Fan DOAS 1

																			in. wg			
DYNAMIC	LOSSES (in	wg)	0.02	0.0378	0.0342	0	0.2934	0	0.1926	0	0.126	0	0.0594	0.0342	0.0594	0	0.0342	0.18	1.0712 in. wg	in. wg	%	in. wg
	C (local loss	coefficient)		0.21	0.19	0	1.63	0	1.07	0	0.7	0	0.33	0.19	0.33	0	0.19	0		1.3034 in. wg	15 %	1.49891 in. wg
	Pv (velocity	pressure, in wg) coefficient)		0.18	0.18		0.18		0.18		0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18		Total E.S.P.:	Safety Factor =	E.S.P. w/ Safety Factor:
2009	10	Page/Type		21.52/CR3-1	21.57/CR9-6		21.42/ED5-3		21.43/ED5-3		21.43/ED5-3		21.54/CR3-12	21.57/CR9-6	21.54/CR3-12		21.57/CR9-6		in. wg			E.S.P. w
	FRICTION	LOSSES (in wg)		0	0	0.16	0	0.0336	0	0.0196	0	0.015	0	0	0	0.004	0	0	0.2322 in. wg			
Friction Loss	(in. wg per	100 ft run)		0	0	1.6	0	0.24	0	0.14	0	0.1	0	0	0	0.08	0					
	Length of	Run (ft)		0	0	10	0	14	0	14	0	15	0	0	0	5	0					
	Duct (inches Length of	x inches)		56 4 x 4	56 4 x 4	56 4 x 4	56 4 x 4	2266 22 x 10	2266 22 x 10	6086 26 x 22	6086 26 x 22	9805 30 x 30	9805 30 x 30	9805 30 x 30	11217 36 x 30	11217 36 x 30	11217 36 x 30					
		Q (cfm)		56	56	56	95	2266	2266	9809	9809	9805	9805	9805	11217	11217	11217					
	Air velocity	(tpm)		1700	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700				
		Run type		Riser	Riser	Riser	Riser	Riser	Riser	Riser	Riser	Riser	Riser	Riser	Riser	Riser	Riser	Riser				
		Type	1 Grille	2 Elbow 90 Deg	3 Fire Smoke Damper (FSD) Riser	4 Shaft - 1st to 2nd	5 Tee Transition	6 Shaft - 2nd to 3rd	7 Tee Transition	8 Shaft - 3rd to 4th	9 Tee Transition	10 Shaft - 4th to 5th	11 90 Deg Elbow with Vanes Riser	12 Fire Smoke Damper (FSD) Riser	13 90 Deg Elbow with Vanes Riser	14 Shaft - 5th to AHU	15 Fire Smoke Damper (FSD) Riser	16 Inlet to Fan				
	,	Section	1	2	3	4	5	9	7	00	. 6	10	11	12	13	14	15	16				

Appendix J – ESP Supply Fan DOAS 2

							Friction Loss (in.				C (local	
			Air		Duct		wg per	FRICTION	2009		loss	DYNAMI
			velocity		(inches x	Length of	100 ft	LOSSES	Fundamentals	Pv (velocity	coefficie	C LOSSES
Section	Туре	Run type	(fpm)	Q (cfm)	inches)	Run (ft)	run)	(in wg)	Page/Type	pressure, in wg)	nt)	(in wg)
1	Fan Discharge	n/a	1700	26795	36 x 72	0	0	0		0.18	0	0.18
	Control Damper	n/a	1700		36 x 72	0	0	0	21.57/CR9-4	0.18	0.18	
3	Fire Smoke Damper (FSD)	Riser	1700	26796	36 x 72	0	0	0	21.57/CR9-6	0.18	0.19	0.0342
4	Duct - AHU to 5th Flr	Riser	1700	26796	36 x 72	5	0.06	0.003		0.18	0	0
5	90 Deg Elbow with Vanes	Riser to Main	1500	23255	70 x 36	0	0	0	21.54/CR3-12	0.14	0.33	0.0462
6	Duct - 5th Flr	Main	1500	23255	70 x 36	12	0.045	0.0054		0.14	0	0
7	Fire Smoke Damper (FSD)	Main	1500	23255	70 x 36	0	0	0	21.57/CR9-6	0.14	0.19	0.0266
8	90 Deg Elbow with Vanes	Main to Riser	1700	23255	36 x 70	0	0	0	21.54/CR3-12	0.18	0.33	0.0594
9	Duct - 5th to 4th Flr	Riser	1700	23255	36 x 70	15	0.06	0.009		0.18	0	0
10	Tee Transition	Riser	1700	15990	36 x 42	0	0	0	21.64/SR5-13	0.18	0.036	0.00648
11	Duct - 4th to 3rd Flr	Riser	1700	15990	36 x 42	14	0.08	0.0112		0.18	0	0
12	Tee Transition	Riser	1700	8765	20 x 42	0	0	0	21.64/SR5-13	0.18	0.045	0.0081
13	Duct - 3rd to 2nd Flr	Riser	1700	8765	20 x 42	14	0.2	0.028		0.18	0	0
14	Tee Transition	Riser	1700	3810	20 x 18	0	0	0	21.64/SR5-13	0.18	0.05	0.009
								0.0252				
	Duct 2nd to 1st Flr	Riser	1700		20 x 18	14	0.18			0.18	0	
16	Fire Smoke Damper (FSD)	Riser	1700	3810	20 x 18	0	0	0	21.57/CR9-6	0.18	0.19	0.0342
17	Balancing Damper	Riser	1700	3810	20 x 18	0	0	0	21.57/CR9-4	0.18	0.18	0.0324
18	90 Deg Elbow with Vanes	Riser to Main	1500	1165	16 x 8	0	0	0	21.54/CR3-12	0.14	0.33	0.0462
19	Duct - 1 st Flr	Main	1500	1165	16 x 8	5	0.22	0.011		0.14	0	0
20	Tee Transition	Main	1500	885	12 x 8	0	0	0	21.64/SR5-13	0.14	0.042	0.00588
21	Duct - 1 st Flr	Main	1500	885	12 x 8	23	0.3	0.069		0.14	0	0
	Tee Transition	Main	1500		12 x 8	0	0			0.14	0.012	0.00168
23	Tee Transition	Main	1500	775	12 x 8	0	0	0	21.63/SR5-5	0.14	0.0074	0.001036
2/	90 Deg Elbow	Main	1500	775	12 x 8	0	0	0	21.52/CR3-1	0.14	0.237	0.03318
	Duct - 1st Flr	Main	1500		12 x 8	9		0.0288	-	0.14	0.237	
	90 Deg Elbow	Main	1500		12 x 8	0	0			0.14	0.237	0.03318
	Duct - 1st Flr	Main	1500		12 x 8	8	0.32	0.0256		0.14	0	
	Tee Transition	Main	1500		9 x 8	0	0.52	0.0230		0.14	0.021	0.00294
29	Duct - 1st Flr	Main	1500	665	9 x 8	46	0	0		0.14	0	0
30	Tee Transition	Main	1500	565	9 x 8	0	0	0	21.63/SR5-5	0.14	0.0225	0.00315
31	Tee Transition	Main	1500	465	9 x 6	0	0	0	21.64/SR5-13	0.14	0.0266	0.003724
32	Duct - 1st Flr	Main	1500	465	9 x 6	30	0	0		0.14	0	0
	Tee Transition	Main	1500		9 x 6	0	0	0	21.63/SR5-5	0.14	0.0194	
	Tee Transition	Main	1500		9 x 6	0	0			0.14		0.0021
	Tee Transition	Main	1500		9 x 6	0	0		· · ·	0.14		0.0021
	Tee Transition	Main	1500		5 x 5	0	0		,	0.14	0.003	0.00042
	Duct - 1st Flr	Main	1500		5 x 5	15 0	0.6	0.09		0.14	0 649	
	Wye 45 Deg Diverging	Branch	1000		5 x 5						0.648	0.03888
	Duct - 1st Flr	Branch Branch	1000 1000		5 x 5 5 x 5	11 0	0.28	0.0308		0.06	0.126	
	Elbow 45 Deg Duct - 1st Flr	Branch	1000		5 x 5	16	0.28			0.06		
	Tee Transition	Branch	1000		4 x 4	0	0.28		21.64/SR5-13	0.06		0.01572
	90 Deg Elbow	Branch	1000		4 x 4	0	0		21.52/CR3-1	0.06		
	Duct - 1st Flr	Branch	1000		4 x 4	8	0.4			0.06	0.21	
	FPIU Inlet	brunen	1000	100	7.4	0	0.4			0.00		0.5
-10						U	U		in. wg			1.183096 in.
								011230	8			1.1203030
										Total E.S.P. :	1.596896	in. wg
										Safety Factor =	15	%
									E.S.P.	w/ Safety Factor:		
										,		ŭ

Appendix K – ESP Return Fan DOAS 2

Section	Туре	Run type	Air velocity (fpm)	Q (cfm)	Duct (inches x inches)	Length of Run (ft)	Friction Loss (in. wg per 100 ft run)	FRICTION LOSSES (in wg)	2009 Fundamentals Page/Type	Pv (velocity pressure, in wg)	C (local loss coefficient)	DYNAMIC LOSSES (in wg)
1	Grille											0.02
2	Elbow 90 Deg	Riser	1700	2898	18 x 15	0	0	0	21.52/CR3-1	0.18	0.22	0.0396
3	Fire Smoke Damper (FSD)	Riser	1700	2898	18 x 15	0	0	0	21.57/CR9-6	0.18	0.19	0.0342
4	Shaft - 1st to 2nd	Riser	1700	2898	18 x 15	10	0.22	0.022		0.18	0	0
5	Tee Transition	Riser	1700	2898	18 x 15	0	0	0	21.43/ED5-3	0.18	1.1	0.198
6	Shaft - 2nd to 3rd	Riser	1700	6667	32 x 30	14	0.13	0.0182		0.18	0	0
7	Tee Transition	Riser	1700	6667	32 x 30	0	0	0	21.43/ED5-3	0.18	0.96	0.1728
8	Shaft - 3rd to 4th	Riser	1700	12162	38 x 30	14	0.09	0.0126		0.18	0	0
9	Tee Transition	Riser	1700	12162	38 x 30	0	0	0	21.43/ED5-3	0.18	0.7	0.126
10	Shaft - 4th to 5th	Riser	1700	17687	50 x 34	15	0.08	0.012		0.18	0	0
11	90 Deg Elbow with Vanes	Riser	1700	17687	50 x 34	0	0	0	21.54/CR3-12	0.18	0.33	0.0594
12	Fire Smoke Damper (FSD)	Riser	1700	17687	50 x 34	0	0	0	21.57/CR9-6	0.18	0.19	0.0342
13	90 Deg Elbow with Vanes	Riser	1700	20379	50 x 38	0	0	0	21.54/CR3-12	0.18	0.33	0.0594
14	Shaft - 5th to AHU	Riser	1700	20379	50 x 38	5	0.07	0.0035		0.18	0	0
15	Fire Smoke Damper (FSD)	Riser	1700	20379	50 x 38	0	0	0	21.57/CR9-6	0.18	0.19	0.0342
16	Inlet to Fan	Riser	1700					0		0.18	0	0.18
								0.0683	in. wg			0.9578 in. w
										Total E.S.P. :	1.0261	in. wg
										Safety Factor =	15	%
									E.S.P. w	/ Safety Factor:	1.180015	in. wg

Appendix L – DOAS 1 Manufacturer's Specifications

VISION AIR HANDLING UNIT TECHNICAL DATA

VISION AIR HANDLING UNIT TECHNICAL DATA Date Saved : February 29 20:										
QUOTE ID	8IUVJ6(XX.000)	REP. OFFICE	Havtech (DC)							
JOB NAME	TEST BUILDING	SALESPERSON	GG							
MODEL NUMBER	CAH028GDGM	ENGINEER								
UNIT TAGGING	ERU-1	VERSION	9.53							

Unit configuration	Side by side with opposed air flows		
Drive (handing) locat	ion Right		
	SUPPLY	RETURN / EXHAUST	
Air volume	13230	9436	s cfm
Altitude	0	0	ft
Turning loss	0.00	0.00	in WC.
External static	2.80	1.50	in WC.
Total static	7.71	3.42	in WC.
External H x W	84 x 66	84 x 66 (Not including base rails)	ins

	CASING DETAILS								
Outer panel	Standard G90 galv steel (unpainted)								
Liner	Galvanized steel (Unless noted per section)								
Insulation	R-13 Injected Foam (Unless noted per section)								
Frame	2 ins								
Base	8" formed channel								
Sound baffles	None (Unless noted per section)								
Tread Plate floor liner	None (unless noted per section)								
Shrink wrapping	No								

Exhaust Air Stream

1 ACCESS SECT	TION(24 ins)				SECTION	4
Drip pan	None		Drip side	-		
			Air pressure drop	0.00		Ins WC
DOOR DATA						
Door location	Drive side		Window size	None		
Door width	20	ins	Light	None		
Door opening	Outward					
2 PANEL FILTER	R(12 ins)				SECTION	4
Туре	Pleated		Clean air press. drop	0.23		ins WC
Efficiency	MERV 8		Mean air press. drop	0.62		ins WC
Face velocity	325	fpm	Dirty air press. drop	1.00		ins WC
Face area	29.0	ft2	Access	Side		
Air volume	9436	cfm				
BANK ARRANGE						
	Size H x W x D					
3.0	24 x 20 x 2	Ins				
6.0	20 x 20 x 2					
2.0	12 x 24 x 2					
DOOR DATA						
Door location	Drive side		Window size	None		
Door width	8	ins	Light	None		
Door opening	Outward					
SPECIAL						
Intersept Antimicrol	bial treatment					
Tread Plate floor lin	ner None					
Liner	(As casing details)					
Insulation	(As casing details)					

(ERU-1) @ McQuay International , www.mcquay.com

Page 1 of 8

VISION AIR HANDLING UNIT TECHNICAL DATA				Date Saved : February 29		
2 PANEL FILTER(12 i	ins)				SECTION	4
Sound baffles	None				•	
Special static pressure	-	ins W	C Filter Gauge	None		
In a corne or extensi					I OF OTION	-
3 ACCESS SECTION					SECTION	4
Drip pan	None		Drip side	-		
D000 0474			Air pressure drop	0.00		Ins WC
DOOR DATA	Date of the		Windowski -	Ninna		
Door location Door width	Drive side 26	ins	Window size	None None		
Door width Door opening	∠o Outward	ms	Light	None		
Door opening	Outward					
4 ENERGY RECOVER	RY SECTION (24 ins	s)			SECTION	3
Heat Wheel Model	ECW 726					
Media Type	Synthetic fiber - 4 a	ngstrom	Electrical Supply Volt	115/60/1		Volt
Wheel Diameter	72.00	ins	Bypass Damp Opening	No Вура	SS	ins
Supply air CFM	13230	CFM	Supply air PD Sum/Win	1.28 / 1.	17	ins WC
Supply air FV Sum/Win	1036 / 1034	ft/min	Exhaust air CFM	9436		CFM
Return air PD Sum/Win	0.91 / 0.83	ins WC	Motor HP	1		
Segmented Wheel	No					
Summer Conditions			Winter Conditions			
Outside air DB	89.7	F	Outside air DB	12.8		F
Outside air WB	76.8	F	Outside air WB	10.0		F.
Return air DB	75.0	F	Return air DB	72.0		F
Return air WB	62.5	F	Return air WB	59.9		F
Supply air DB	82.2	F	Supply air DB	43.6		F
Supply air WB	70.8	F	Supply air WB	39.9		F
Exhaust air DB	85.7	F	Exhaust air DB	28.1		F
Exhaust air WB	73.0	F	Exhaust air WB	28.0		F
Latent effectiveness	68.62	%	Latent effectiveness	70.81		%
Sensible effectiveness	75.30	%	Sensible effectiveness	77.20		%
Total effectiveness	70.75	%	Total effectiveness	74.55		%
Total Energy Recovered	345881	Btu/hr	Total Energy Recovered	6/5484		Btu/hr
5 ACCESS SECTION	(16 ins)				SECTION	1
Drip pan	None		Drip side	-	•	
			Air pressure drop	0.01		Ins WC
DOOR DATA						
Door location	Drive side		Window size	None		
Door width	12	ins	Light	None		
Door opening	Outward					

VISION AIR HANDLING UNIT TECHNICAL DATA

6 RETURN/EXHAUST	FAN SECTION(40 i	ns)		SECTION		1
Air volume	9436	cfm	Motor power	15.0	HP	
External static pressure	1.50	ins WC	Motor type	ODP		
Total static pressure	3.42	ins WC	Frame size	215 T frame		
Cabinet static pressure	0	ins WC	Electrical supply	460/60/3		
Type	Centrifugal - Plenum		Motor efficiency	Premium		
Blade type/Class	Airfoil / 2		Motor speed	3500	rpm	
Quantity of Fans	1		Block-off Plate	No		
Fan wheel diameter	18.25	ins	Motor pole	4		
Brake horsepower	11.56	HP	Full load current	17.8	Α	
Operating/Max speed	3233 / 3650	rpm	Lock rotor current	116	Α	
Discharge	Axial		Motor supplier	Generic		
Air modulation	None		Actual drive service fac.	1.34		
Drip pan	None		Bearing type	N/A		
Drip pan side	-		Outlet velocity	-	ft/m	
Wheel guard	None		Inlet screen	None		
Belt guard	None		Outlet screen	None		
Inspection port	None		Motor location	Behind Fan		
Material type	Aluminium		Number of blades	12		
DRIVES *						
Fan sheave	N/A		Motor sheave	N/A		
Number of belts	0		Belt	N/A		
* McQuay reserves the r		nt but equi	valent drive package.			
ANTI-VIBRATION MOU						
Type	Spring					
Seismic restraint	None					
DOOR DATA						
Door location	Drive side		Window size	None		
Door width	26	ins	Light	None		
Door opening	Outward					
VFD / STARTER / DISC						
Selection type	VFD - NEMA 1		Vendor	ABB		_
Auxiliary Control	None		Voltage	460		
-	None					
Mounting	Door Side		H x W x D	19.09 x 7.42 x 9.89	ins	
Enclosure	NEMA 1		Coil Voltage	N/A		
Line Reactor	None		Hand Off Auto Switch	None		
24V Ctrl Transformer	None					
VFD Quantity	1					

Supply Air Stream

VISION AIR HANDLING UNIT TECHNICAL DATA

1 MIXING BOX(5	50 ins)				SECTION	2
Drip pan	None		Drip side	-		
Floor grating	No					
	OUTSIDE A	IR	RETURN AIR			
Length x Width	42.00 x 62.00		No opening			ins
Location	End		-			
Dampers	UltraSeal Low Leak		None			
Actuation	-		-			
Rated cfm	13230		13230			cfm
Air pressure drop	0.07					in WC
Quantity	1		1			
FILTER DATA						
	Pleated		Clean air press. drop	0.36		ins WC
Type Efficiency	MERV 8			0.36		ins WC
Face velocity	MERV 0 456	fpm	Mean air press. drop Dirty air press. drop	1.00		ins WC
Face velocity	29.0	ft2	Access	Side		IIIS WC
Air volume	13230	cfm	ACCESS	Side		
BANK ARRANGE		VIIII				
No. of filters	Size H x W x D					
3.0	24 x 20 x 2	ins				
6.0	20 x 20 x 2					
2.0	12 x 24 x 2					
DOOR DATA						
Door location	Drive side		Window size	None		
Door width	30	ins	Light	None		
Door opening	Outward					
SPECIAL						
Intersept Antimicro						
Tread Plate floor li						
Liner	(As casing details)					
Insulation	(As casing details)					
Sound baffles	None					
Special static pres	sure -	ins	WC Filter Gauge	None		
2 PANEL FILTE	R(14 ins)				SECTION	7
Туре	Pleated		Clean air press. drop	0.32		ins WC
Efficiency	MERV 8		Mean air press. drop	0.66		ins WC
Face velocity	434	fpm	Dirty air press, drop	1.00		ins WC
Face area	30.5	ft2	Access	Side		
Air volume	13230	cfm				
BANK ARRANGE	MENT					
No. of Filters						
1.0	24 x 24 x 4	Ins				
2.0	24 x 20 x 4					
2.0	20 x 24 x 4					
4.0	20 x 20 x 4					
2.0	12 x 24 x 4					
DOOR DATA						
Door location	Drive side		Window size	None		
Door width	10	ins	Light	None		
Door enaming	0	1113	Light	TTOTIC		

(ERU-1) @ McQuay International , www.mcquay.com

None

Outward

Page 4 of 8

Door opening

Intersept Antimicrobial treatment MERV 13 FINAL FILTER Tread Plate floor liner

SPECIAL

VISION AIR HANDLING UNIT TECHNICAL DATA					Date Saved : February 29 201		
2 PANEL FILTER(14	ins)				SECTION	2	
Liner Insulation Sound baffles Special static pressure	(As casing details) (As casing details) None 1.00	ins V	VC Filter Gauge	None	•		
3 ACCESS SECTION	l(30 ins)				SECTION	2	
Drip pan	None		Drip side Air pressure drop	0.00		Ins WC	
DOOR DATA			All pressure drop	0.00		1113 440	
Door location Door width Door opening	Drive side 26 Outward	ins	Window size Light	None None			
4 ENERGY RECOVE	RY SECTION (24 in:	s)			SECTION	3	
Traccine election					TOPOTION		
5 ACCESS SECTION	` ' 		D.::-		SECTION	5	
Drip pan	None		Drip side Air pressure drop	0.00		Ins WC	
DOOR DATA							
Door location	Drive side		Window size	None			
Door width	20 Outward	ins	Light	None			
Door opening	Outward						
6 CHILLED WATER	COIL(36 ins)				SECTION	5	
Coil model	5WS1212B		Number of coils	2			
Total capacity	977702	Btu/h	Number of rows	12			
Sensible capacity	518295	Btu/h	Fins per inch	12			
Air volume	13230	cfm					
Entering db/wb	82.2 / 70.8	F	Entering water	44.0		F	
Leaving db/wb	46.4 / 46.2	F	Leaving water	51.7		F	
Finned height x length Face area	36 x 53 26.50	ins ft2	Water flow rate	255.60 26.80		gpm ftHD	
Face velocity	499	ft/m	Water pressure drop Water velocity	5.70		ft/s	
Coil air pressure drop	1.67	ins WC	Water velocity	5.70		103	
con an procedure arep	1.07		Fluid volume	42.0		gal	
			Fluid weight	356.00		lb	
Connection type	Threaded		Fin material	Aluminu	ım (.0075)		
Connection Qty x size	2 x 2.50	ins	Tube material	Copper			
Connection location	Drive side		Header material	Copper			
Connection material	Carbon steel		Case material	Galv. st	eel		
Glycol type (%)	- (0 %)		Drain pan		al resistant coa	ated	
Faulian Faul			Desir essentit	galvaniz			
Fouling Factor	0		Drain pan side	Drive si	de		
Coil ando	EWC1212B		Turbospirals	No			

5WS1212B

Electro-fin coat

None

Coil code

VISION AIR HANDLING UNIT TECHNICAL DATA Date Saved : February 29 2012

7 HOT WATER COIL	(12 ins)			SE	CTION	5
Coil model	5WQ1201C		Number of coils	2		
Capacity	545074	Btu/h	Number of rows	1		
			Fins per inch	12		
Air volume	13230	cfm				
Entering db	28.1	F	Entering water	140.0	F	
Leaving db	65.8	F	Leaving water	119.6	F	
Finned height x length	36 x 50	ins	Water flow rate	53.40	gpm	1
Face area	25.00	ft2	Water pressure drop	7.10	ftHD)
Face velocity	529	ft/m	Water velocity	4.70	ft/s	
Coil air pressure drop	0.21	ins WC				
			Fluid volume	6.0	gal	
			Fluid weight	58.00	lb	
Connection type	Threaded		Fin material	Aluminum (.0	0075)	
Connection Qty x size	2 x 1.50	ins	Tube material	Copper (.020))	
Connection location	Drive side		Header material	Copper		
Connection material	Carbon steel		Case material	Galvanized t	rack	
Glycol type (%)	- (0 %)		Drip pan	None		
Fouling Factor	0		Drip pan side	-		
			Turbospirals	No		
Coil code	5WQ1201C		Electro-fin coat	None		
8 ACCESS SECTION	l(24 ins)			SE	CTION	5
Drip pan	None		Drip side	-		
			Air pressure drop	0.00	Ins \	NC .
DOOR DATA						
Door location	Drive side	<u> </u>	Window size	None		
Door width	20	ins	Light	None		
Door opening	Outward					

VISION AIR HANDLING UNIT TECHNICAL DATA

9 SUPPLY FAN SECT	TION(52 ins)			SECTION	
Air volume	13230	cfm	Motor power	30.0	HP
External static pressure	2.80	ins WC	Motor type	ODP	
Total static pressure	7.71	ins WC	Frame size	286 T frame	
Cabinet static pressure	0	ins WC	Electrical supply	460/60/3	
Туре	Centrifugal - Plenum		Motor efficiency	Premium	
Blade type/Class	Airfoil / 2		Motor speed	1750	rpm
Quantity of Fans	1		Block-off Plate	No	
Fan wheel diameter	27.00	ins	Motor pole	4	
Brake horsepower	22.65	HP	Full load current	34.3	Α
Operating/Max speed	1938 / 1981	rpm	Lock rotor current	217.5	A
Discharge	Axial		Motor supplier	Generic	
Air modulation	None		Actual drive service fac.	1.32	
Drip pan	None		Bearing type	N/A	
Drip pan side	-		Outlet velocity	-	ft/m
Wheel guard	None		Inlet screen	None	
Belt guard	None		Outlet screen	None	
Inspection port	None		Motor location	Behind Fan	
Material type	Aluminium		Number of blades	9	
DRIVES *	11/4			****	
Fan sheave	N/A		Motor sheave	N/A	
Number of belts			Belt	N/A	
* McQuay reserves the r		it but equi	valent drive package.		
Type	Spring				
Seismic restraint	None				
DOOR DATA	NOTIC				
Door location	Drive side		Window size	None	
Door width	30	ins	Light	None	
Door opening	Outward	1110	Light	None	
Door oponing	outhuru .				
VFD / STARTER / DISC					
Selection type	VFD - NEMA 1		Vendor	ABB	
Auxiliary Control	None		Voltage	460	
-	None				
Mounting	Door Side		H x W x D	23.58 x 10.49 x 10.25	ins
Enclosure	NEMA 1		Coil Voltage	N/A	
Line Reactor	None		Hand Off Auto Switch	None	
24V Ctrl Transformer	None				
VFD Quantity	1				
NOTES					

NOTES

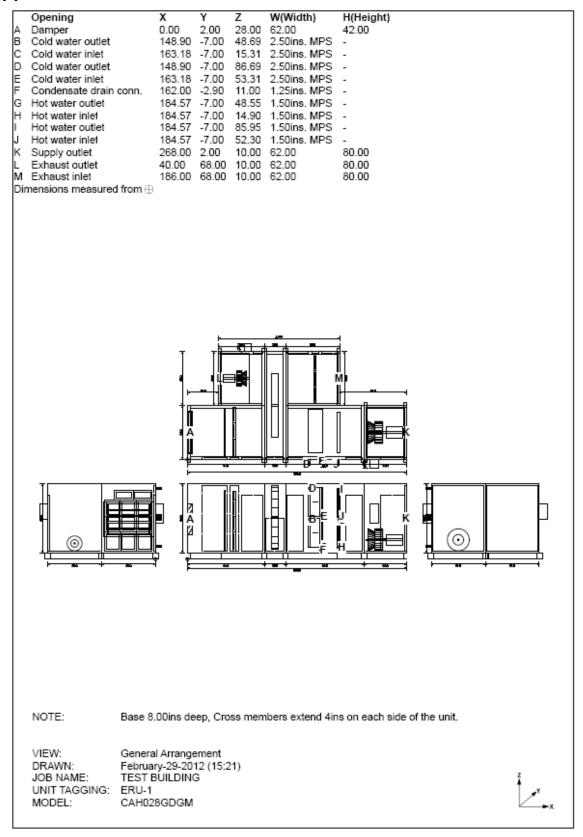
Supply fan performance is certified in accordance with the Central Station Air-Handling Unit Certification Program, which is based on ARI Standard 430.

Important Notice

This unit may not meet ASHRAE Standard 90.1 - 2007 fan motor power limitations. If that code applies, alternate fan selections may be required.

The designer and installer must ensure compliance with applicable codes. A component supplier cannot determine the brake horsepower ("BHP") for other motors in the air handling system.

Before approving this unit, determine whether ASHRAE Standard 90.1 - 2007 has been adopted in the specific jurisdiction or contract specifications in which the unit will be installed.



VISION AIR HANDLING UNIT TECHNICAL DATA

SHIPPING SECTION DETAILS							
	Length (inches)	Weight (lb)					
Section 1	56	1133					
Section 2	94	1178					
Section 3	26	2050					
Section 4	66	751					
Section 5	96	2899					
Section 6	52	1455					
TOTALS	268 00 (Lower level total)	9466 (Entire unit weight)					

UNIT SOUND	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
Radiated	83	79	87	86	73	70	55	42
Unit discharge	91	89	98	94	94	94	92	79
Unit return	86	86	89	106	85	86	83	75

Appendix M – DOAS 1 Dimensions

Appendix N – DOAS 2 Manufacturer's Specifications

VISION AIR HANDLING UNIT TECHNICAL DATA

QUOTE ID	8IUVJ6(XX.001)	REP. OFFICE	Havtech (DC)
JOB NAME	TEST BUILDING	SALESPERSON	GG
MODEL NUMBER	CAH049GDGM	ENGINEER	
UNIT TAGGING	ERU-2	VERSION	9.53

Unit configuration	Side by side with opposed air flows		
Drive (handing) locati	on Right		
	SUPPLY	RETURN / EXHAUST	
Air volume	23635	16856	s cfm
Altitude	0	0	ft
Turning loss	0.00	0.00	in WC.
External static	2.00	1.20	in WC.
Total static	6.99	3.13	in WC.
External H x W	108 x 84	108 x 74 (Not including base rails)	ins

	CASING DETAILS					
Outer panel	Standard G90 galv steel (unpainted)					
Liner	Galvanized steel (Unless noted per section)					
Insulation	R-13 Injected Foam (Unless noted per section)					
Frame	2 ins					
Base	8" formed channel					
Sound baffles	None (Unless noted per section)					
Tread Plate floor liner	None (unless noted per section)					
Shrink wrapping	No					

Exhaust Air Stream

1 PANEL FILTE	R(12 ins)					SECTION	4
Туре	Pleated		Clean	air press. drop	0.26		ins WC
Efficiency	MER∨8		Mean	air press. drop	0.63		ins WC
Face velocity	355	fpm	Dirty a	air press. drop	1.00		ins WC
Face area	47.5	ft2	Acces	S	Side		
Air volume	16856	cfm					
BANK ARRANGE	MENT						
No. of Filters	Size H x W x D						
15.0	20 x 24 x 2	Ins					
DOOR DATA							
Door location	Drive side		Windo	w size	None		
Door width	8	ins	Light		None		
Door opening	Outward						
SPECIAL							
Intersept Antimicro	bial treatment						
Tread Plate floor li	ner None						
Liner	(As casing details)						
Insulation	(As casing details)						
Sound baffles	None						
Special static pres	sure -	ins	WC	Filter Gauge	None		

(ERU-2) © McQuay International , www.mcquay.com

VISION AIR HANDLING UNIT TECHNICAL DATA Date Saved : February 29 2012

2 ACCESS SECTION	36 ins)				SECTION	4
Drip pan	None		Drip side	-		
			Air pressure drop	0.00		Ins WC
DOOR DATA						
Door location	Drive side		Window size	None		
Door width	28	ins	Light	None		
Door opening	Outward					
3 ENERGY RECOVER	RY SECTION (24 ins)				SECTION	3
Heat Wheel Model	ECW 966					
Media Type	Synthetic fiber - 4 an	gstrom	Electrical Supply Volt	115/60/1	l	Volt
Wheel Diameter	96.00	ins	Bypass Damp Opening	No Вура	ISS	ins
Supply air CFM	23635	CFM	Supply air PD Sum/Win	1.29 / 1.	18	ins WC
Supply air FV Sum/Win	1045 / 1042	ft/min	Exhaust air CFM	16856		CFM
Return air PD Sum/Win	0.91 / 0.83	ins WC	Motor HP	1.5		
Segmented Wheel	No					
Summer Conditions			Winter Conditions			
Outside air DB	89.7	F	Outside air DB	12.8		F
Outside air WB	76.8	F	Outside air WB	10.0		F
Return air DB	75.0	F	Return air DB	72.0		F
Return air WB	62.5	F	Return air WB	59.9		F
Supply air DB	82.2	F	Supply air DB	43.6		F
Supply air WB	70.8	F	Supply air WB	39.9		F
Exhaust air DB	85.7	F	Exhaust air DB	28.0		F
Exhaust air WB	73.0	F	Exhaust air WB	28.0		F
Latent effectiveness	68.67	%	Latent effectiveness	70.86		%
Sensible effectiveness	75.34	%	Sensible effectiveness	77.24		%
Total effectiveness	70.80	%	Total effectiveness	74.59		%
Total Energy Recovered	618195	Btu/hr	Total Energy Recovered	1207247	7	Btu/hr
4 ACCESS SECTION	16 ins)				SECTION	1
Drip pan	None		Drip side	-		
			Air pressure drop	0.02		Ins WC
DOOR DATA						

Window size

Light

ins

None

None

Drive side

Outward

12

Door location

Door opening

Door width

VISION AIR HANDLING UNIT TECHNICAL DATA

							_
5 RETURN/EXHAUST	FAN SECTION(54 i	ns)			SECTION		1
Air volume	16856	cfm	Motor power	20.0		HP	
External static pressure	1.20	ins WC	Motor type	ODP			
Total static pressure	3.13	ins WC	Frame size	256 T fra	me		
Cabinet static pressure	0	ins WC	Electrical supply	460/60/3			
Type	Centrifugal - Plenum		Motor efficiency	Premium	1		
Blade type/Class	Airfoil / 2		Motor speed	1750		rpm	
Quantity of Fans	1		Block-off Plate	No			
Fan wheel diameter	30.00	ins	Motor pole	4			
Brake horsepower	13.38	HP	Full load current	23.3		Α	
Operating/Max speed	1408 / 1783	rpm	Lock rotor current	145		Α	
Discharge	Axial		Motor supplier	Generic			
Air modulation	None		Actual drive service fac.	1.31			
Drip pan	None		Bearing type	N/A			
Drip pan side	-		Outlet velocity	-		ft/m	
Wheel guard	None		Inlet screen	None			
Belt guard	None		Outlet screen	None			
Inspection port	None		Motor location	Behind F	an		
Material type	Aluminium		Number of blades	9			
DRIVES *							
Fan sheave	N/A		Motor sheave	N/A			
Number of belts	0		Belt	N/A			
* McQuay reserves the r	ight to provide a differer	nt but equi	valent drive package.				
ANTI-VIBRATION MOU	NTS / SPRINGS						
Type	Spring						
Seismic restraint	None						
DOOR DATA							
Door location	Drive side		Window size	None			·
Door width	30	ins	Light	None			
Door opening	Outward						
							
VFD / STARTER / DISC							
Selection type	VFD - NEMA 1		Vendor	ABB			
Auxiliary Control	None		Voltage	460			
-	None						
Mounting	Door Side		H x W x D		0.49 x 10.25	ins	
Enclosure	NEMA 1		Coil Voltage	N/A			
Line Reactor	None		Hand Off Auto Switch	None			
24∀ Ctrl Transformer	None						
VFD Quantity	1						

Supply Air Stream

VISION AIR HANDLING UNIT TECHNICAL DATA

1 MIXING BOX(68 in	is)				SECTION	2
Drip pan	None		Drip side	-		
Floor grating	No					
	OUTSIDE AI	R	RETURN AIR			
Length x Width	60.00 x 80.00		No opening			ins
Location	End					
Dampers	UltraSeal Low Leak		None			
Actuation	-		-			
Rated cfm	23635		23635			cfm
Air pressure drop	0.07					in WC
Quantity	1		1			
FILTER DATA						
Туре	Pleated		Clean air press. drop	0.35		ins WC
Efficiency	MERV 8	_	Mean air press. drop	0.67		ins WC
Face velocity	448	fpm	Dirty air press. drop	1.00		ins WC
Face area	52.8	ft2	Access	Side		
Air volume	23635	cfm				
BANK ARRANGEMEN						
	ze H x W x D					
	20 x 20 x 2	ins				
DOOR DATA	B		142-1			
Door location	Drive side		Window size	None		
Door width	30	ins	Light	None		
Door opening	Outward					
SPECIAL	ttt					
Intersept Antimicrobial						
Tread Plate floor liner	None					
Liner	(As casing details)					
Insulation Sound baffles	(As casing details) None					
		ing 1	NO Eilter Course	None		
Special static pressure	-	ins \	NC Filter Gauge	None		
DANEL FILTER/4/	Lina\				SECTION	21
2 PANEL FILTER(14				0.05	SECTION	
Type	Pleated		Clean air press. drop	0.35		ins WC
Efficiency	MERV 8		Mean air press. drop	0.68		ins WC
Face velocity	453	fpm	Dirty air press. drop	1.00		ins WC
Face area	52.1	ft2	Access	Side		
Air volume	23635	cfm				
BANK ARRANGEMEN						
	H x W x D	Inc				
	20 x 20 x 4	Ins				
DOOR DATA	Drive side		Windowsize	None		
Door location Door width	Drive side 10	ine	Window size	None		
Door width Door opening	Outward	ins	Light	None		
	Julwaru					
SPECIAL	traatmant					
Intersept Antimicrobial						
MERV 13 FINAL FILTE Tread Plate floor liner						
Liner	None (As casing details)					
	(As casing details)					
Insulation Sound baffles	(As casing details)					
Special static pressure	None 1.00	ins \	NC Filter Gauge	None		
Special static pressure	1.00	IIIS V	AC Filler Gauge	None		

(ERU-2) @ McQuay International , www.mcquay.com

Page 4 of 8

	ISION AIR HANDLING	G UNIT 1	TECHNICAL DATA	Date S	aved : Februa	ry 29 2012
3 ACCESS SECTION	l(36 ins)				SECTION	2
Drip pan	None		Drip side Air pressure drop	0.00		Ins WC
DOOR DATA Door location Door width Door opening	Drive side 28 Outward	ins	Window size Light	None None		
4 ENERGY RECOVE	RY SECTION (24 ins)				SECTION	3
5 ACCESS SECTION					SECTION	5
Drip pan DOOR DATA	None		Drip side Air pressure drop	0.00		Ins WC
Door location Door width Door opening	Drive side 20 Outward	ins	Window size Light	None None		
6 CHILLED WATER				_	SECTION	5
Coil model Total capacity Sensible capacity	5WM1212B 1737241 921508	Btu/h Btu/h	Number of coils Number of rows Fins per inch	2 12 12		
Air volume Entering db/wb Leaving db/wb Finned height x length Face area Face velocity Coil air pressure drop	23635 82.2 / 70.8 46.5 / 46.3 48 x 71 47.33 499 1.67	cfm F F ins ft2 ft/m ins WC	Entering water Leaving water Water flow rate Water pressure drop Water velocity Fluid volume Fluid weight	44.0 51.6 456.60 27.10 5.10 75.0 625.00		F F gpm ftHD ft/s gal lb
Connection type Connection Qty x size Connection location Connection material Glycol type (%) Fouling Factor Coil code	Threaded 2 x 3.00 Drive side Carbon steel - (0 %) 0	ins	Fin material Tube material Header material Case material Drain pan Drain pan side Turbospirals Electro-fin coat	Copper Copper Galv. st	eel al resistant coa eed	ited

VISION AIR HANDLING UNIT TECHNICAL DATA

7 HOT WATER COIL	(12 ins)				SECTION	5
Coil model	5WB1401C		Number of coils	3		
Capacity	570741	Btu/h	Number of rows	1		
			Fins per inch	14		
Air volume	23635	cfm				
Entering db	43.6	F	Entering water	140.0		F
Leaving db	65.7	F	Leaving water	119.4		F
Finned height x length	30 x 68	ins	Water flow rate	55.30		gpm
Face area	42.50	ft2	Water pressure drop	2.80		ftHD
Face velocity Coil air pressure drop	556 0.25	ft/m ins WC	Water velocity	3.90		ft/s
			Fluid volume	7.0		gal
			Fluid weight	63.00		lb
Connection type	Threaded		Fin material	Aluminu	m (.0075)	
Connection Qty x size	2 x 1.50	ins	Tube material	Copper (.020)	
Connection location	Drive side		Header material	Copper		
Connection material	Carbon steel		Case material	Galvaniz	ed track	
Glycol type (%)	- (0 %)		Drip pan	None		
Fouling Factor	0		Drip pan side	-		
			Turbospirals	No		
Coil code	5WB1401C		Electro-fin coat	None		
8 ACCESS SECTION	l(24 ins)				SECTION	5
Drip pan	None		Drip side	-		
			Air pressure drop	0.00		Ins WC
DOOR DATA						
Door location	Drive side		Window size	None		
Door width	20	ins	Light	None		
Door opening	Outward					

VISION AIR HANDLING UNIT TECHNICAL DATA

9 SUPPLY FAN SECT	FION(68 ins)			SECTION	6
Air volume	23635	cfm	Motor power	50.0	HP
External static pressure	2.00	ins WC	Motor type	ODP	
Total static pressure	6.99	ins WC	Frame size	365 T frame	
Cabinet static pressure	0	ins WC	Electrical supply	460/60/3	
Туре	Centrifugal - Plenum		Motor efficiency	Premium	
Blade type/Class	Airfoil / 2		Motor speed	1160	rpm
Quantity of Fans	1		Block-off Plate	No	
Fan wheel diameter	40.25	ins	Motor pole	4	
Brake horsepower	36.64	HP	Full load current	57.8	A
Operating/Max speed	1184 / 1329	rpm	Lock rotor current	362.5	A
Discharge	Axial		Motor supplier	Generic	
Air modulation	None		Actual drive service fac.	1.36	
Drip pan	None		Bearing type	N/A	
Drip pan side	-		Outlet velocity	-	ft/m
Wheel guard	None		Inlet screen	None	
Belt guard	None		Outlet screen	None	
Inspection port	None		Motor location	Behind Fan	
Material type	Aluminium		Number of blades	9	
DRIVES *					
Fan sheave	N/A		Motor sheave	N/A	
Number of belts	0		Belt	N/A	
* McQuay reserves the r	ight to provide a differer	nt but equi			
ANTI-VIBRATION MOU					
Туре	Spring				
Seismic restraint	None				
DOOR DATA					
Door location	Drive side		Window size	None	,
Door width	30	ins	Light	None	
Door opening	Outward				
VFD / STARTER / DISC	ONNECT DATA				
Selection type	VFD - NEMA 1		Vendor	ABB	
Auxiliary Control	None		Voltage	460	
Auxiliary Cornio	None		voltage	400	
Mounting	Door Side		H x W x D	27.75 x 10.49 x 11.45	ins
Enclosure	NEMA 1		Coil Voltage	N/A	110
Line Reactor	None		Hand Off Auto Switch	None	
24V Ctrl Transformer	None		Tiana On Auto Switch	Hono	
VFD Quantity	1				
NOTES	-				

NOTES

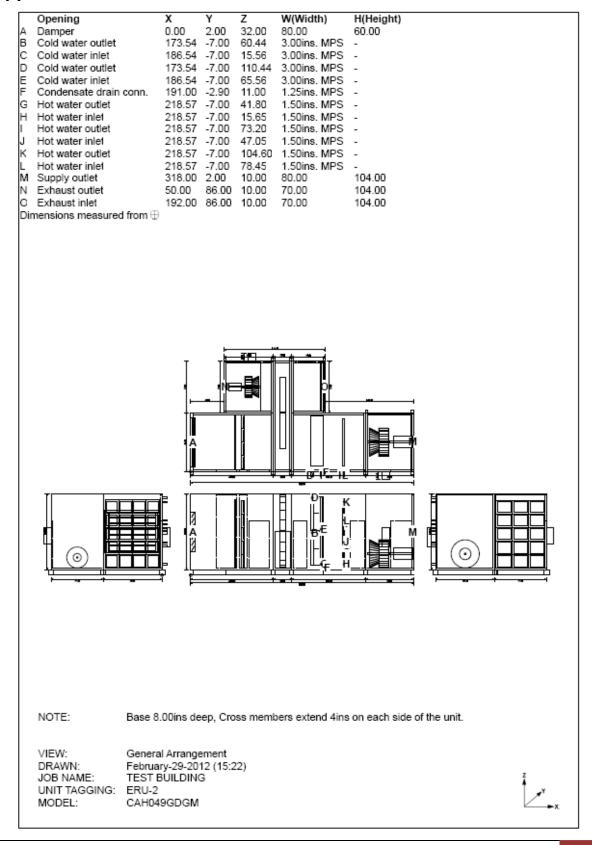
Supply fan performance is certified in accordance with the Central Station Air-Handling Unit Certification Program, which is based on ARI Standard 430.

Important Notice

This unit may not meet ASHRAE Standard 90.1 - 2007 fan motor power limitations. If that code applies, alternate fan selections may be required.

The designer and installer must ensure compliance with applicable codes. A component supplier cannot determine the brake horsepower ("BHP") for other motors in the air handling system.

Before approving this unit, determine whether ASHRAE Standard 90.1 - 2007 has been adopted in the specific jurisdiction or contract specifications in which the unit will be installed.



VISION AIR HANDLING UNIT TECHNICAL DATA

SHIPPING SEC	CTION DETAILS		
	Length (inches)	Weight (lb)	
Section 1	70	1845	
Section 2	118	1873	
Section 3	26	3461	
Section 4	48	715	
Section 5	106	4492	
Section 6	68	2761	
TOTALS	318.00 (Lower level total)	15147 (Entire unit weight)	

UNIT SOUND	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
Radiated	81	83	87	74	72	70	52	39
Unit discharge	92	92	97	93	93	95	86	77
Unit return	79	81	97	87	87	87	81	72

Appendix O - DOAS 2 Dimensions

Appendix P – Cooling Calculations FPIU

			GPM	Through		1	4 1030	4 1030	4 1030	4 1030		470	470	1 760	2 500	145	1 340	245	140	2 870	2 855	2 855	4 1160	630	1 1365	1 1365	1 965	1 960	140	4 745	4 710	4 710	2 1370	630			1 1030	1 1025		1 320			120	473	473	4
				CFM		300	850	850	850	850	300			525	450		300			525	009	009	029		850	850	450	450		525	450	450	850		750	525	525	525		300	300	300				
lingwaileng	Cooling coll	משון ואובבו	(trom	design		2200	11400	11400	11400	11400		cooling needed	cooling needed	2700	3400	cooling needed	2200	needed	needed	5400	2800	2800	0056	cooling needed	2500	2500	4500	3300	cooling needed	6500	2800		9100	needed				4000		2200			needed	needed	cooling needed	
				AirriA			0.11	0.11	0.11	0.11					90'0		ı	No further cooling needed	No further cooling needed	0.08	0.10	0.10	0.07		0.07	0.07	0.02	0.01		0.08	90'0	0.06	0.11	er cooling				0.08		0.03			No further cooling needed	0 No further cooling needed	er cooling	ı
				Head				7.00		7.00		No further	No further	0.24	0.82	No further	0.24	No furth	No furth		1.62	1.62	7.00	No further	0.70		0.70	0.40	No further	5.52			2.10	No f				0.47	ء ۽	0.24			No furth	No furth	No further	
				Downson	Coils:	2	9	9	9			0	0	2	2	0	2	0	0	4	4	4	9	0	4	4	4	2	0	4	4	4	9	0		2	2	7	loor Sout	2001			0			
				i e	Size:	3	2	2	2	2	3	2	2	3	3	3	3	3	3	3	3	3	2	2	5	5	5	5	3	3	3	3	5	2	5	3			with Corridor 5th Floor South	3		3	3	5	2	
			her	ing Febr	Z	-	45593 FPIU-2-13	FPIU-2-12	FPIU-2-13	FPIU-2-14	783 FPIU-2-5	-6441 FPIU-2-7	FPIU-2-3(2628 FPIU-2-6	3021 FPIU-2-3	-825 FPIU-2-4	780 FPIU-2-1	-1920 FPIU-2-2	-254 FPIU-3-1(5117 FPIU-3-9	11464 FPIU-3-7	FPIU-3-8	9316 FPIU-3-6	-918 FPIU-3-5	5323 FPIU-3-4	5323 FPIU-3-3	4122 FPIU-3-2	2854 FPIU-3-1	-254 FPIU-4-10	6342 FPIU-4-9	11177 FPIU-4-7	FPIU-4-8	9029 FPIU-4-6	-918 FPIU-4-5	5133 FPIU-4-4	3932 FPIU-4-3	3932 FPIU-4-2	3968 FPIU-4-1	468 With Corr	974 FPIII-5-6	366 FPIU-5-7	339 FPIU-5-8	-600 FPIU-5-4	8184 FPIU-5-1	FPIU-5-27	
_	tuiloo	_	_	Supply Cooling	2	4	5544 4	5544	5544	5544	1232	14476	14476	7238	1540	4466	1232	7546	4312	10626	7854 1:	7854	15708	19404	15862	15862	15862	15708	4312	92.29		8008							1694	F114	616	1386	3696	14553	14553	
Man	Max			Load for S		965	69/19				2015	22511		9866	4561	3641	2012	5626	4058	15743	27172		25024	18486	21185	21185	19984	18562	4058	13118	27193		25045	18486	20687	19486	19486	19368	1226	1590	982	1725	3096	20922		
			Primary	CFM		8	180	180	180	180	40	470	470	235	20	145	40	245	140	345	255	255	510	089	515	515	515	510	140	220	260	260	520	630	205	205	202	905	3 5	2 5	20	45	120	472.5	472.5	ŀ
					Room Name	Custodian Storage	Library				Office	Staff Development/Literacy Coaches		Cw - Activities for Daily Living	Custodian Shop	Physical Therapy	Office	Medical Suite	Is Staff Locker	Is Special Education	Is Classroom		Is Classroom	Is Classroom	Is Classroom	Is Classroom	Is Classroom	Is Classroom	Hs Staff Locker	Hs Special Education	Hs Classroom		Hs Classroom	Men's Kitchen Locker Rooms	Guidance Records	Program Office	Hs Store	Government & Club House	Hs Art Room							
					Room No.	141					206	Г		209	241	242			341	347	349		351	353	355	357	359	361	441		449					╅	T	T	539	545	547	549	551	552		

0 - 1		000	*****	0000	* 0000	0 0 11101	•	•	000	0	0000	000	•	000
Т	nter	200	8194	6160	2034	2034 FPIU-2-9	n	7	0.82	0.10	3800	900	7	800
207A Office		20	2605	616	1989	1989 FPIU-2-8	3	2	0.24	0.03	2200	300	1	320
207B Storage		20	367	616	-249	FPIU-2-28	3	0	No further		cooling needed			20
547A Program Office	Office	20	5355	616	4739	4739 FPIU-5-2	3	4	1.62	90.0	2000	450	2	470
Hs Store		35	5028	1078	3950	3950 FPIU-5-5	3	2	0.82	0.06	4000	675	2	710
551A Governm	Government & Club Office	20	7616	616	7000	7000 FPIU-5-3	2	9	14.40	0.15	14300	1050	9	1090
Г	Government & Club Office	20	7616	616	7000	7000 with 551A								
Corridor	Corridor 3rd Floor South	315	8847	9702	-855	-855 FPIU-3-11	2	0	No furthe	0 No further cooling needed	needed			630
Corridor	Corridor 4th Floor South	315	8878	9702	-824	-824 FPIU-4-11	2	0	No furthe	0 No further cooling needed	needed			475
Corridor	Corridor 5th Floor South	160	3518	4928	-1410	-1410 FPIU-5-24	3	0	No furthe	0 No further cooling needed	needed			270
Is Project Room	t Room	580	19577	17864	1713	1713 FPIU-1-2	5	2	0.40	0.03	3300	450	1	1030
Is Project Room	t Room	575	15236	17710	-2474	-2474 FPIU-1-3	5	0	No furthe	0 No further cooling needed	needed			575
Is Art		490	22908	15092	-7276	-7276 FPIU-1-4	3	0	No furthe	0 No further cooling needed	needed			490
		490		15092		FPIU-1-19	3	0	0 No further	r cooling needed	pepeau			490
Is Art Storage	orage	70	2342	2156	186	FPIU-1-5	3	2	0.24	0.03	2200	300	1	370
Hs Pare	Hs Parents/Community Office	100	4896	3080	1816	1816 FPIU-1-9	3	2	0.24	0.08	2700	525	1	625
Is Paren	Is Parents Coordinator Room	100	5257	3080	2177	2177 FPIU-1-10	3	2	0.24	0.03	2200	300	1	400
School S	School Safety Office/Locker Rooms	9	4616	1848	2768	2768 FPIU-1-18	3	2	0.82	0.03	2800	300	2	360
Is Recei	Is Receiving Room	40	1646	1232	414	414 FPIU-1-17	3	2	0.24	0.01	2200	300	1	340
Custodia	Custodial Office	9	3102	1848	1254	1254 FPIU-1-11	3	2	0.24	0.03	2200	300	1	360
Is Gene	Is General Supply Room	55	1806	1694	112	112 FPIU-1-16	3	2	0.24	0.01	2200	300	1	355
Special	Special Education Classroom	405	11969	12474	-505	-505 FPIU-2-16	3	0	No furthe	0 No further cooling needed	needed			405
Is Audio	Is Audio/Video Security Storage Roo	9	1555	1848	-293	-293 FPIU-2-26	3	0	No furthe	0 No further cooling needed	needed			9
Special	Special Education Classroom	405	11969	12474	-505	-505 FPIU-2-17	3	0	No furthe	0 No further cooling needed	needed			405
Is Book Store	Store	130	2564	4004	-1440	-1440 FPIU-2-30	3	0	No furthe	0 No further cooling needed	needed			130
Special	Special Education Clasroom	405	12480	12474	6	FPIU-2-18	3	0	No furthe	0 No further cooling needed	needed			405
Classroc	Classroom Speech	150	3813	4620	-807	-807 FPIU-2-25	3	0	No furthe	0 No further cooling needed	needed			150
Special	Special Education Classroom	405	12447	12474	-27	FPIU-2-19	3	0	No furthe	0 No further cooling needed	needed			405
Classroc	Classroom Speech	150	3813	4620	-807	-807 with 218								150
Special	Special Education Classroom	405	13072	12474	598	FPIU-2-20	3	2	0.24	0.03	2200	300	1	705
Hs Book Store	Store	130	2564	4004	-1440	-1440 With 216 Is	Book Stor	a						
Special	Special Education Clasroom	425	17327	13090	4237	4237 FPIU-2-24	3	4	0.47	0.12	4300	675	1	1100
Special	Special Education Clasroom	255	28559	7854	12851	12851 FPIU-2-21	5	4	2.40	0.03	6500	550	2	805
		255		7854		FPIU-2-22	5	4	2.40	0.03	6500	550	2	805
Special	Special Education Clasroom	405	21602	12474	9128	9128 FPIU-2-23	2	4	4.00	0.06	9300	750	4	1155
Is Classroom	room	250	17017	16940	11	FPIU-3-12	2	2	0.40	0.03	3300	450	1	1000
Is Classroom	room	220	16804	16940	-136	-136 FPIU-3-13	2	0	No furthe	0 No further cooling needed	pepeau			550
Is Classroom	room	550	16862	16940	-78	-78 FPIU-3-14	5	0	No furthe	0 No further cooling needed	pepeau			550
Records		35	734	1078	-344	-344 FPIU-3-32	3	0	No furthe	0 No further cooling needed	needed			35
Guidance Suite	e Suite	15	545	462	83	83 FPIU-3-20	67	2	0.24	0.03	2200	300	1	355

5133 FPILL-3-15 3	60		4 162	0.10	9800	450	4 6
3546 FPIU-3-18	13.18	o m		0.07	3600	525	2 2
-336 FPIU-3-22	3-22	89	0 No further	cooling needed			
-4085 FPIU-3-30	3-30	3	0 No further	cooling needed	papaa		
2606 FPIU-3-23	-23	5	2 0.40	0.03	3300	450	1
-1437 with 322	22						
3020 FPIU-3-24	-24	3	2 0.82	0.02	3100	375	2
-1301 FPIU-3-29	-29	3	0 No further	cooling	needed		
11367 FPIU-3-25	-25	5	4 2.40	0.02	2800	450	2
FPIU-3-26	-26	5	4 2.40	0.02	5800	450	2
7873 FPIU-3-28	-28	5	4 5.00	0.04	8000	650	3
11544 FPIU-3-27	-27	5	6 14.40	0.18	12300	850	9
76 FPIU-4-12	-12	5	2 0.40	0.03	3300	450	1
1008 FPIU-4-13	-13	5	2 0.40	0.03	3300	450	1
408 FPIU-4-14	-14	5	2 0.40	0.03	3300	450	1
-344 FPIU-4-32	-32	3	0 No further	cooling needed	pepee		
1417 FPIU-4-17	-17	3	2 0.24	0.03	2200	300	1
4242 FPIU-4-15	-15	3	2 2.81	0.04	4400	525	4
3802 FPIU-4-18	-18	3	4 1.62	0.03	3900	300	2
113 FPIU-4-21	-21	5	2 0.40	0.03	3300	450	1
405 FPIU-4-30	1-30	5	2 0.40	0.03	3300	450	1
113 FPIU-4-22	1-22	5	2 0.40	0.03	3300	450	1
-78 FPIU-4-29	t-29	3	0 No further cooling needed	cooling n	papaa		
833 FPIU-4-23	4-23	5	2 0.40	0.03	3300	450	1
-1544 FPIU-4-28	4-28	3	0 No further cooling needed	cooling n	pepee		
7981 FPIU-4-24	4-24	5	4 5.00	0.04	8000	650	3
5739 FPIU-4-27	4-27	5	2 2.70	0.03	0009	750	3
12676 FPIU-4-25	4-25	5	4 2.40	0.03	6500	550	2
FPIU-4-26	4-26	2	4 2.40	0.03	6500	550	2
-757 FPIU-5-23	5-23	3	0 No further cooling needed	cooling n	papaa		
761 FPIU-5-9	5-9	3	2 0.24	0.03	2200	300	1
843 FPIU-5-20	5-20	3	2 0.24	0.03	2200	300	1
-9 FPIU-5-10	5-10	3	0 No further cooling needed	cooling n	papaa		
-70 FPIU-5-22	5-22	3	0 No further	cooling	pepeau		
4007 FPIU-5-11	-11	5	2 1.30	0.01	4200	450	2
FPIU-5-28	5-28	2	2 1.30	0.01	4200	450	2
3284 FPIU-5-12	5-12	3	2 0.82	0.03	3400	450	2
1200 FPIU-5-18	5-18	3	2 0.24	0.03	2200	300	1
2000 00000		L	0.00	0 44	00100	000	•

		312.5		9625		FPIU-5-14	5	9	2.10	0.11	9100	850	2	1163
1 7	Hs Receiving	20	3427	1540	1887	1887 FPIU-5-17	e	2	0.24	0.03	2200	300	1	350
1 7	Science Lab Demo	315	33602	9702	14198	14198 FPIU-5-15	5	4	2.40	0.04	7100	650	2	962
		315		9702		FPIU-5-16	5	4	2.40	0.04	001/	059	2	962
1 -	Supervisor	40	2833	1232	1601	1601 FPIU-1-6	3	2	0.24	0.03	2200	300	1	340
1	Furniture Storage	85	2166	2618	-452	-452 FPIU-1-13	3	0	0 No further	er cooling	cooling needed			85
Ι -	Storage	20	1255	1540	-285	FPIU-1-14	3	0	No further	er cooling	needed			50
Ι.	Vault W. Anteroom	20	1875	1540	335	335 FPIU-1-15	3	2	0.24		2200	300	1	350
ı	Office	20	1369	616	753	753 with 308								
Ι.	Office	20	1205	616	589	589 with 308								
Ι -	Guidance Room	40	2366	1232	1134	1134 FPIU-3-21	3	2	0.24	0.03	2200	300	1	340
1	Meeting	120	2693	3696	-1003	-1003 FPIU-3-32	3	0	0 No further cooling needed	er cooling	needed			120
Ι.	Waiting	96	2124	2772	-648	-648 with 307 Rec	Records							
ı ¯	Copy	20	2812	616	2196	2196 FPIU-3-16	3	2	0.24	0.03	2200	300	1	320
Ī	Is Music Storage	20	369	616	-247	-247 FPIU-3-33	33	0	0 No further cooling needed	er cooling	needed			20
Ι.	Is Music Storage	25	452	770	-318	-318 with 318A								
Ī	Is Music Storage	15	573	462	111	111 with 318A								
1	Waiting	90	2124	2772	-648	-648 with 407								
ı	Copy	20	2812	616	2196	2196 FPIU-4-16	3	2	0.24	0.03	2200	300	1	320
1 7	Hs Music Storage	15	251	462	-211	-211 FPIU-4-33	3	0	No further	er cooling	cooling needed			15
. 1	Hs Music Storage	20	430	616	-186	-186 with 418A								
- 1	Hs Music Storage	10	378	308	70	70 with 418A								
. 1	Hs Guidance Conf	120	2286	3696	-1410	-1410 FPIU-5-26	3	0	No further	er cooling needed	needed			
. 1	Hs Guidance Office	40	1339	1232	107	107 FPIU-5-19	3	2	0.24	0.03	2200	300	1	420
ı I	Hs Guidance Office	40	1339	1232	107	107 with 516B								
. 1	Hs College Office	40	1299	1232	29	with 516B								
1 1	Hs College Conference	100	2105	3080	-975	-975 FPIU-5-25	3	0	0 No further cooling needed	er cooling	needed			100
1 7	Vestibule	20	1364	1540	-176	-176 FPIU-1-12	3	0	0 No further cooling needed	er cooling	pepeau			50
1 7	Corridor 1st Floor West	280	7813	8624	-811	-811 FPIU-1-7	5	0	0 No further cooling needed	er cooling	needed			280
1 1	Corridor 2nd Floor South	125	9956	3850	5716	5716 FPIU-2-15	3	4	5.52	90'0	0085	450	4	575
1]	Corridor 3rd Floor West	135	15495	4158	11337	11337 FPIU-3-19	5	9	7.00	0.11	11400	850	4	
1 7	Corridor 4th Floor West	67.5	21993	2079	17835	17835 FPIU-4-19	5	9	2.10	20'0	0016	850	2	918
1 7		67.5		2079		FPIU-4-20	5	9	2.10	20'0	0016	850	7	918
1]	Corridor 5th Floor East	210	7421	6468	953	953 FPIU-5-21	3	2	0.24	0.03	2200	300	1	510
1 1	Corridor 1st Floor East	110	2931	3388	-457	-457 FPIU-1-8	3	0	0 No further cooling needed	er cooling	needed			110
. 1	Corridor 2nd Floor East	145	4009	4466	-457	-457 FPIU-2-27	3	0	0 No further cooling needed	er cooling	needed			145
1	Corridor 3rd Floor East	85	2295	2618	-323	-323 FPIU-3-31	3	0	0 No further cooling needed	er cooling	needed			85
ľ	Corridor Ath Floor East	28	2000	2618	-323	-373 FDIII-4-31	er.	_	O No further cooling needed	rcooling	papaga			20

Appendix Q - Cooling Coil FPIU Sizing

Model: KLPS-D

Sensible Water Coil Data

Unit	Rows		Head	Sensible Cooling Coil Air Flow, CFM & Resulting Sensible MBH								
Size		G.P.M.	Loss	200	250	300	350	400	450	500	550	600
		1.0	0.20	-1.7	-1.9	-2.1	-2.2	-2.3	-2.4	-2.4	-2.5	-2.6
		2.0	0.68	-2.1	-2.4	-2.6	-2.8	-3.0	-3.1	-3.3	-3.4	-3.5
	2	3.0	1.40	-2.3	-2.6	-2.9	-3.1	-3.4	-3.6	-3.7	-3.9	-4.0
		4.0	2.33	-2.3	-2.7	-3.0	-3.3	-3.6	-3.8	-4.0	-4.2	-4.4
1		Airside D PS		0.01	0.01	0.02	0.02	0.03	0.04	0.05	0.06	0.08
'	4	1.0	0.40	-2.5	-2.8	-3.1	-3.3	-3.5	-3.6	-3.7	-3.8	-3.9
		2.0	1.36	-2.9	-3.3	-3.8	-4.1	-4.5	-4.7	-5.0	-5.2	-5.4
		4.0	4.65	-3.1	-3.7	-4.2	-4.7	-5.2	-5.6	-6.0	-6.3	-6.7
		6.0	9.54	-3.1	-3.8	-4.4	-4.9	-5.4	-5.9	-6.4	-6.8	-7.2
		Airsid	e D PS	0.02	0.03	0.04	0.05	0.06	0.08	0.09	0.11	0.13

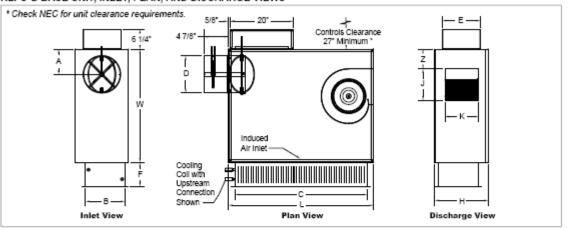
Unit	Rows		Head	Sensible Cooling Coil Air Flow, CFM & Resulting Sensible MBH								
Size		G.P.M.	Loss	300	375	450	525	600	675	750	825	900
		1.0	0.24	-2.2	-2.4	-2.6	-2.7	-2.8	-2.9	-3.0	-3.0	-3.1
		2.0	0.82	-2.8	-3.1	-3.4	-3.6	-3.8	-4.0	-4.1	-4.3	-4.4
	2	3.0	1.69	-3.1	-3.5	-3.8	-4.1	-4.4	-4.6	-4.8	-5.0	-5.1
		4.0	2.81	-3.2	-3.7	-4 .1	-4.4	-4.7	-5.0	-5.2	-5.5	-5.7
3		Airside D PS		0.01	0.02	0.03	0.04	0.05	0.08	0.07	0.09	0.10
' '		1.0	0.47	-3.2	-3.6	-3.8	-4.0	-4.2	-4.3	-4.5	-4.6	-4.6
		2.0	1.62	-3.9	-4.5	-5.0	-5.4	-5.8	-6.1	-6.3	-6.6	-6.8
	4	4.0	5.52	-4.3	-5.1	-5.8	-6.5	-7.0	-7.5	-8.0	-8.4	-8.8
		6.0	11.33	-4.5	-5.4	-6.2	-6.9	-7.5	-8.1	-8.7	-9.2	-9.7
		Airsid	e D PS	0.03	0.04	0.06	0.08	0.10	0.12	0.14	0.17	0.20

Unit	Rows		Head	Sensible Cooling Coil Air Flow, CFM & Resulting Sensible MBH								
Size		G.P.M.	Loss	450	550	650	750	850	950	1050	1150	1250
		1.0	0.4	-3.3	-3.5	-3.7	-3.8	-3.9	-4.0	-4.1	-4.2	4.3
		2.0	1.3	-4.2	-4.6	-5.0	-5.3	-5.5	-5.8	-6.0	-6.1	-6.3
	2	3.0	2.7	-4.6	-5.2	-5.6	-6.0	-6.4	-6.7	-7.0	-7.2	-7.5
		4.0	4.4	-4.9	-5.5	-6.0	-6.5	-6.9	-7.3	-7.7	-8.0	-8.3
		Airsid	e D PS	0.01	0.02	0.02	0.03	0.04	0.04	0.05	0.06	0.07
. '		1.0	0.7	-4.5	-4.9	-5.1	-5.3	-5.5	-5.6	-5.7	-5.8	-5.9
		2.0	2.4	-5.8	-6.5	-7.1	-7.6	-8.0	-8.4	-8.7	-9.0	-9.2
5	4	3.0	5.0	-6.3	-7.2	-8.0	-8.7	-9.3	-9.8	-10.3	-10.7	-11.1
		4.0	8.3	-6.5	-7.6	-8.5	-9.3	-10.1	-10.7	-11.3	-11.9	-12.3
l .		Airsid	e D PS	0.02	0.03	0.04	0.06	0.07	0.09	0.10	0.12	0.14
. '		1.0	0.6	-5.0	-5.4	-5.7	-5.9	-6.0	-6.2	-6.3	-6.3	-6.4
		2.0	2.1	-6.4	-7.3	-8.0	-8.6	-9.1	-9.5	-9.8	-10.1	-10.4
	6	4.0	7.0	-7.1	-8.4	-9.5	-10.5	-11.4	-12.2	-13.0	-13.6	-14.2
		6.0	14.4	-7.3	-8.7	-10.0	-11.2	-12.3	-13.3	-14.3	-15.1	-16.0
		Airsid	e D PS	0.03	0.05	0.07	0.09	0.11	0.13	0.15	0.18	0.21

NOTE: All data is based on 75.0°F entering air, 58.0°F entering water, at an altitude of 0 ft. Program calculations assume 30% propylene glycol. Water temperature of must be above dew point throughout the building to prevent condensation on coil. Typical entering water temperature for cooling coil ranges from 55°F to 62°F.

The MBH values listed above is the sensible MBH for the CFM that is induced throught the cooling coil. Total Cooling MBH will include the latent MBH that is provided and by the primary air. The latent MBH is addeed to the sensible MBH to create the Total Coolig MBH.

Appendix R - FPIU Specifications


FAN POWERED TERMINAL UNITS C

KLPS | Low Profile, Series Flow

KLPS-D Base Unit Dimensional Information

KLPS-D BASE UNIT, INLET, PLAN, AND DISCHARGE VIEWS

KLPS-D BASE UNIT, DIMENSIONAL DETAILS

	Max	Max							Coolir	ng Coil			Disc	harge		ı	F
Unit Size	Primary CFM	Fan CFM	HP	Inlet Size	L	W	H	Α	В	С	D	E	J	к	Z	1 Row	2 Row
3	230	1100	1/3	06	40"	26"	11"	5"	8 3/4"	36"	5 7/8"	9 5/8"	9"	6 7/8"	2 1/4"	5 3/4"	7 7/8"
3	920	1100	1/3	80	40"	26"	11"	6"	8 3/4"	36"	7 7/8"	9 5/8"	9"	6 7/8"	2 1/4"	5 3/4"	7 7/8"
5	515	1660	1/2	06	46"	36"	17*	5"	12 1/2"	42 1/8"	5 7/8"	12"	10°	10 5/8"	6 1/4"	5*	8"
5	920	1660	1/2	80	46"	36"	17*	6"	12 1/2"	42 1/8"	7 7/8"	12"	10°	10 5/8"	6 1/4"	5"	8"
5	1430	1660	1/2	10	46"	36"	17"	7*	12 1/2"	42 1/8"	9 7/8"	12"	10"	10 5/8"	6 1/4"	5"	8"

NOTE: Left-hand base unit with electronic control enclosure shown; right-hand is available.

KLPS-D Base Unit Features & Options =

STANDARD FEATURES

- · 20 gage galvanized steel casing construction.
- Available in unit sizes 3 and 5.
- Control enclosure for electronic components.
- 1/2" thick, dual density fiberglass insulation meeting NFPA 90A and UL 181 safety requirements.
- [120, 208/240, or 277 volt, single-voltage] ECM motor.
- Field adjustable VCU or remote adjustable ACU controller.
- · Removable bottom panel allows easy access to all internal components for maintenance.
- · Linear averaging airflow sensor.
- Electronic controls include 24 volt control transformer.
- · Sensible Cooling Coil factory installed on induced air inlet with drip tray.
- · Construction type air fliter, two per unit, size 3: 18 1/2"x10"x1"; size 5: 22" x 14 1/2" x 1".
- ETL listed; adherence to UL 1995 and CSA C22.2 No. 236.95
- AHRI certified sound ratings.

OPTIONAL FEATURES

- · Liners: 3/8" Cellular insulation, 1/2" or 1" (size 5 only), Foil encapsulated fiberglass insulation, Sterilwall, Perforated doublewall, 1" Dual density fiberglass (size 5 only).
- · Four quadrant, center averaging airflow sensor.
- · Left or right-hand control enclosure.
- Upstream or downstream cooling coil connection.
- Motor toggle disconnect switch.
- · Motor fusing.
- MERV 8 air filter, two per unit, size 3: 18 1/2" x 10" x 1"; size 5: 22" x 14 1/2" x 1".
- · Dust tight control enclosure.
- Hanger brackets.
- · Dual access panels with optional Cam locks.

Appendix S – Heating Calculations FPIU

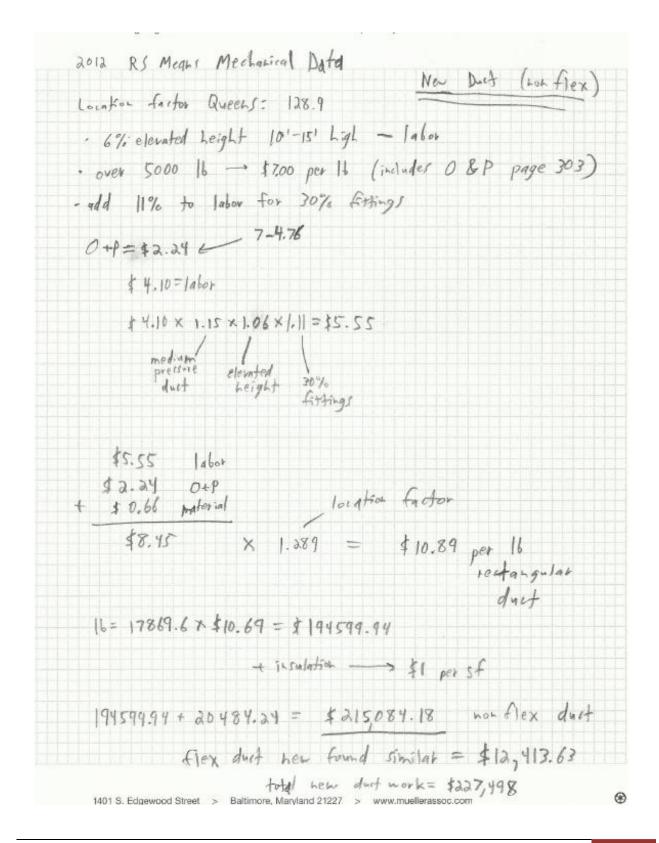
				Primany Air										
			Sensible	Cooling in	Total						Heating Can			
		rimary	space	Winter, Since	lotal				7		Meet (Irom	Mag	0000	
		Suppy to	Load	deg Air	Needed	FPIU	Unit	Rows of	Loss (in	Airside	sheet,	Recirculated Through	Through	Total CFM
Room No.	. Room Name	Room	(Btu/hr)	(Btu/hr)	(Btu/hr)	Number		Coils:	wg)	D PS	Btu/hr)	For Heating	, iio	
141	Custodian Storage	80	-2642	-2200	-4842	FPIU-1-1	3	1	0.20	0.07	2800	_	1	520
205	Library	180	-31443	-4950	-51243	-51243 FPIU-2-11	5	2	6.10	0.01	12900	275	3	455
		180		-4950		FPIU-2-12	5	2	6.10	0.01	12900	275	3	455
		180		-4950		FPIU-2-13	5	2	6.10	0.01	12900	275	3	455
		180		-4950		FPIU-2-14	5	2	6.10	0.01	12900	275	3	455
206	Office	40	-991	-1100	-2091	FPIU-2-5	33	1	0.20	0.07	2800	440	1	480
207	Staff Development/Literacy Coaches	470	9022-	-12925	-33556	-33556 FPIU-2-7	5	2	6.10	0.03	17700	450	3	1390
		470		-12925		FPIU-2-30	5	2	6.10	0.03	17700	450	3	
500	Cw - Activities for Daily Living	235	-4864	-6463	-11327	-11327 FPIU-2-6	3	2	0.15	0.12	11700		1	885
241	Custodian Shop	20	-2330	-1375	-3705	FPIU-2-3	3	1	0.20	0.07	2800	440	1	490
242	Physical Therapy	145	-2328	-3988	-6316	-6316 FPIU-2-4	3	1	0.20	90.0	6400	085	1	725
245	Office	40	-1158	-1100	-2258	-2258 FPIU-2-1	3	1	0.20	0.07	5800	440	1	480
246	Medical Suite	245	-4283	-6738	-11021	-11021 FPIU-2-2	3	2	0.40	0.12	11300		1	825
341	Is Staff Locker	140	-2091	-3850	-5941	FPIU-3-10	3	1	0.20	0.05	6100	210	1	059
347	Is Special Education	345	-3857	-9488	-13345	-13345 FPIU-3-9	33	2	2.70	0.07	14000	440	3	785
349	Is Classroom	255	8673-	-7013	-20763	-20763 FPIU-3-7	3	2	0.40	0.10	10800	210	1	765
		255		-7013		FP1U-3-8	3	2	0.40	0.10	10800		1	765
351	Is Classroom	510	-6408	-14025	-20433	-20433 FPIU-3-6	5	2	6.10	0.05	21200		3	1135
353	Is Classroom	630	-6941	-17325	-24266	-24266 FPIU-3-5	5	2	6.10	0.11	26400	975	3	1605
355	Is Classroom	515	-6827	-14163	-20990	-20990 FPIU-3-4	5	2	6.10	0.05	21200	625	3	1140
357	Is Classroom	515	-6827	-14163	-20990	-20990 FPIU-3-3	5	2	6.10	0.05	21200		3	1140
359	Is Classroom	515	-6437	-14163	-20600	-20600 FPIU-3-2	5	2	6.10	0.05	21200	625	3	1140
361	Is Classroom	510	-5910	-14025	-19935	-19935 FPIU-3-1	5	2	6.10	0.05	21200		3	1135
441	Hs Staff Locker	140	-2061	-3850	-5911	-5911 FPIU-4-10	3	1	0.20	0.10	6100		1	650
447	Hs Special Education	220	-3617	-6050	-9667	FPIU-4-9	3	1	2.40	0.08	9700	650	4	870
449	Hs Classroom	260	-6591	-7150	-20891	20891 FPIU-4-7	3	1	2.40	0.11	10500		4	
		260		-7150		FPIU-4-8	3	1	2.40	0.11	10500		4	
451	Hs Classroom	520		-14300	-20561	FPIU-4-6	5	2	6.10	0.05			3	
453	Hs Classroom	630	-6941	-17325	-24266	-24266 FPIU-4-5	5	2	15.00	0.08	26600		5	1430
455	Hs Classroom	505	-6517	-13888	-20405	-20405 FPIU-4-4	5	2	6.10	0.05	21200	625	3	1130
457	Hs Classroom	505		-13888	-20016	-20016 FPIU-4-3	3	2	6.60	0.21	20600		5	
459	Hs Classroom	505		-13888	-20016	-20016 FPIU-4-2	က	2	6.60	0.21	20600		5	
461	Hs Classroom	200	-6054	-13750	-19804	FPIU-4-1	3	2	6.60	0.21	20600	790	5	1290
539	Men's Kitchen Locker Rooms	55	-634	-1513		with Corridor 5th Floor South	r 5th Flo	or South						
541	Women's Kitchen Locker Rooms	55	-634	-1513		with Corridor 5th Floor South	r 5th Flo	or South						
545	Guidance Records	20	-691	-550	-1241	FPIU-5-6	3	1	0.20	0.07	5800		1	
547	Program Office	20	-308	-550	-858	-858 FPIU-5-7	3	1	0.20	0.07	5800		1	460
549	Hs Store	45	-560	-1238	-1798	-1798 FPIU-5-8	3	1	0.20	0.07	5800		1	
551	Government & Club House	120	-672	-3300	-3972	-3972 FPIU-5-4	3	1	0.20	0.07	5800	440	1	260

	Office Work Room A/V Storage Tech Center Office Storage Program Office Hs Store Government & Club Office Government & Club Office Corridor 3rd Floor South Corridor 5th Floor South Corridor 5th Floor South Corridor 5th Floor South Corridor 5th Floor South S Project Room Is Project Room S Receiving Room S Room	472.5 60 60 60 20 20 20 20 20 20 20 20 20 2	-1615 -434 -4479 -1393 -1393 -1278 -1278 -1316 -1704 -1704 -15675 -15675 -4311 -4413 -6418	-12994 -1650 -1550	## PIN-5-2 ## PIN-5-2 ## PIN-2-3 ## PIN-2-3 ## PIN-2-3 ## PIN-5-3 ## PIN-3-3 ## PIN	## FPIU-5-27 -3265 FPIU-2-30 -947 FPIU-2-29 -1943 FPIU-2-28 -1057 FPIU-2-28 -1057 FPIU-2-28 -1279 FPIU-5-3 -2279 FPIU-5-3 -2279 FPIU-5-3 -2279 FPIU-5-3 -2279 FPIU-5-11 -24332 FPIU-3-11 -24338 FPIU-4-11 -24338 FPIU-4-11	N W W W W W W W	1 1 2	0.20	0.05	15100 5800 5800 10300	625 440 440		200
	Dib Office Club Office Club Office or South	60 20 20 20 20 20 20 20 20 20 20 20 20 20	.1615 -434 -4479 -1338 -1278 -1278 -1704 -1704 -1704 -1766 -15675 -15675 -4311 -4413 -6418	-1650 -5500 -5500 -550 -550 -550 -550 -550	-3265 -3265 -3264 -347 -347 -347	PIU-2-10 PIU-2-29 PIU-2-28 PIU-2-28 PIU-2-28 PIU-5-2 PIU-5-3 PIU-5-3 PIU-5-3 PIU-5-3 PIU-5-11 PIU-4-11 PIU-4-11	m m m m m m m	1 2	0.20	0.07	5800 5800 10300	440	1 1 1	200
	Club Office Club Office or South or South or South file Clocker Rooms filice/Locker Rooms	15 20 20 20 20 20 20 20 35 35 31 315 315 315 315 315 3	-434 -4479 -1393 -507 -1278 -1316 -1704 -15669 -15669 -15675 -4311 -4413 -6418	-413 -5500 -550 -550 -550 -550 -550 -550 -5		PIU-2-29 PIU-2-9 PIU-2-8 PIU-2-8 PIU-2-3 PIU-5-5 PIU-5-3 With 551A PIU-5-1 PIU-5-2 PIU-5-3 With 551A PIU-1-1	m m m m m m m	1 2	0.20	0.07	5800	440	1	
	Club Office Club Office or South or South or South or South or South files (Locker Rooms)	200 20 20 20 30 31 31 31 31 31 31 31 31 490 490 70	-4479 -1393 -1393 -1278 -1316 -1704 -1704 -1569 -1569 -1567 -4311 -9064 -4413 -6418	-5500 -550 -550 -550 -963 -963 -550 -550 -550 -663 -4400 -15950 -15950 -15937 -13475	- 19979 - 1943 - 1943 - 1957 -	PIU-2-9 PIU-2-8 PIU-2-28 PIU-5-2 PIU-5-3 With 551A PIU-5-1 PIU-5-24 PIU-1-3	m m m m m	2		0.07	10300		1	455
	Club Office Club Office or South or South or South or South file South or South	20 20 35 35 20 20 20 315 315 315 315 315 315 490 490 700	-1393 -507 -1278 -1316 -1704 -1704 -15669 -15675 -4311 -9064 -4413 -6418	-550 -550 -550 -550 -550 -550 -550 -6683 -8663 -8	1943 1-1943 1-1057 1-105	PIU-2-8 PIU-2-28 PIU-2-28 PIU-5-2 PIU-5-5 PIU-5-1 PIU-5-3 PIU-5-34 PIU-1-3 PIU-1-3	8 8 8 8 4		0.40			440		640
	Club Office Club Office or South	20 20 35 20 20 20 20 20 315 315 315 315 490 490 70 70	-507 -1278 -1316 -1704 -1704 -1569 -15675 -4311 -9064 -4413 -6418	-550 -550 -550 -550 -550 -8663 -8663 -8663 -84400 -15950 -15950 -15913 -13475	-1057 F -1828 F -2279 F -2254 R -2254 R -24328 F -24338 F -24338 F -25014 F -25014 F -25014 F -25014 F	PIU-2-28 PIU-5-2 PIU-5-5 PIU-5-3 With 551A PIU-3-11 PIU-4-11 PIU-1-2	E E E	1	0.20	0.07	2800	440	1	460
	Sub Office Sub Office or South	20 20 20 20 315 315 315 315 315 490 490 70 70	-1278 -1316 -1704 -1704 -1569 -15675 -4311 -9064 -4413 -6418	-550 -663 -550 -550 -8663 -8663 -4400 -15950 -15950 -15813 -13475	-1828 -1279 -1224 -2254 -2254 -2254 -2254 -2254 -25024 -25025 -2	PIU-5-2 PIU-5-5 PIU-5-3 With 551A PPIU-4-11 PPIU-4-11 PPIU-5-24 PPIU-1-2	E S S	1	0.20	0.07	2800	440	1	460
	Sub Office Sub Office or South or South or South or South or South files/Locker Rooms om	35 20 20 315 315 315 315 315 490 490 490 70	-1316 -1704 -1704 -1569 -1567 -4311 -9064 -4413 -6418	-963 -550 -550 -8663 -8663 -4400 -15950 -15950 -13475 -13475	-2279 f -2254 f -2254 v -24332 f -24338 f -13004 f -25014 f -33368 f	PIU-5-5 PIU-5-3 With 551A PPIU-3-11 PPIU-5-24 PPIU-1-2	2 3	1	0.20	0.07	2800	440	1	460
	Club Office Club Office or South or South or South or South or South office Inmunity Office dinator Rooms om	20 20 315 315 315 160 160 490 490 70 100	-1704 -1704 -1569 -15675 -4311 -9064 -4413 -6418	-550 -550 -8663 -8663 -4400 -15950 -15950 -13475 -13475	-2254 -2254 -2254 -2254 -2254 -2254 -25014 -250256 -33368 -33368 -22514 -250256 -25026	### 5514 ### 5514 ### 5514 ### 5514 ### 5514 ### 5514 ### 5514	2	1	0.20	20.0	2800	440	1	475
	or South or South or South or South or South or Munity Office dinator Room ffice/Locker Rooms	20 315 315 160 160 580 575 575 490 490 70	-1704 -15669 -15675 -4311 -9064 -4413 -6418	-550 -8663 -8663 -4400 -15950 -15813 -13475	-2254 \\ -24332 -24338 -13004 -25014 -25015 -20226 -33368 -33368 -225014 -20226 -2022	with 551A FPIU-3-11 FPIU-4-11 FPIU-5-24 FPIU-1-2		1	0.20	0.07	2800	440	1	480
	or South or South or South or South and South frice Accordance frice/Locker Rooms om	315 315 315 160 580 575 575 490 70 70	-15669 -15675 -4311 -9064 -9064 -4413 -6418	-8663 -8663 -4400 -15950 -15813 -13475 -13475	-24332 -24338 -13004 -25014 -20226 -33368	FPIU-3-11 FPIU-4-11 FPIU-5-24 FPIU-1-2								
	or South or South namunity Office dinator Room fflice/Locker Rooms	315 160 160 580 575 575 490 490 70	-15675 -4311 -9064 -4413 -6418	-8663 -4400 -15950 -15813 -13475 -13475	-24338 F	PIU-5-24 PIU-5-24 FPIU-1-2 PIU-1-3	5	2	6.10	0.11	26400	975	3	1290
	or South nmunity Office dinator Room ffice/Locker Rooms	160 580 575 575 490 70 70	-4311 -9064 -4413 -6418	-4400 -15950 -15813 -13475 -13475	-13004 F	FPIU-5-24 FPIU-1-2 FPIU-1-3	2	2	6.10	0.11	26400	975	3	1290
	nmunity Office dinator Room fifice/Locker Rooms	580 575 575 490 490 70 70	-9064 -4413 -6418	-15950 -15813 -13475 -13475	-25014 F	FPIU-1-2 FPIU-1-3	e	2	2.70	20.0	14000	440	3	710
	nmunity Office dinator Room fffice/Locker Rooms	580 575 490 490 70 100	-9064 -4413 -6418	-15950 -15813 -13475 -13475	-25014 F	FPIU-1-2 FPIU-1-3								
	mmunity Office dinator Room fffice/Locker Rooms	575 490 490 70 100	-4413	-15813 -13475 -13475	-20226	FPIU-1-3	2	2	15.00	0.08	26600	800	5	1380
	nmunity Office dinator Room fffice/Locker Rooms	490 490 70 100	-6418	-13475	-33368		2	2	6.10	0.05	21200	625	8	1200
	Imunity Office dinator Room ffice/Locker Rooms	70	2840	-13475		FPIO-1-4	8	2	9.60	0.12	17700	580	5	1560
	nmunity Office dinator Room ffice/Locker Rooms om	100	2446			FPIU-1-19	8	2	9.60	0.12	17700	580	2	
	munity Office dinator Room ffice/Locker Rooms om	100	0147-	-1925	-4341	-4341 FPIU-1-5	3	1	0.20	0.07	2800	440	1	510
	dinator Room ffice/Locker Rooms om		-3125	-2750	-5875	-5875 FPIU-1-9	3	1	0.20	0.10	6100	510	1	610
	ffice/Locker Rooms om	100	-3514	-2750	-6264	-6264 FPIU-1-10	3	1	0.20	0.12	6400	280	1	680
	omo	09	-2679	-1650	-4329	-4329 FPIU-1-18	3	1	0.20	0.07	2800	440	1	200
		40	-761	-1100	-1861	-1861 FPIU-1-17	3	1	0.20	0.07	2800	440	1	480
	U	09	-1561	-1650	-3211	FPIU-1-11	3	1	0.20	0.07	2800	440	1	200
	oly Room	25	-2191	-1513	-3704	-3704 FPIU-1-16	3	1	0.20	0.07	2800	440	1	495
	on Classroom	405	-4111	-11138	-15249	-15249 FPIU-2-16	3	2	2.70	0.12	16100	580	3	985
	Is Audio/Video Security Storage Roo	90	-2063	-1650	-3713	-3713 FPIU-2-26	3	1	0.20	0.07	5800	440	1	200
$\neg \neg \neg \neg \neg$	on Classroom	405	-4111	-11138	-15249	-15249 FPIU-2-17	3	2	2.70	0.12	16100	580	3	985
		130	-3205	-3575	-13545	-13545 FPIU-2-30	3	2	2.70	0.07	14000	440	3	700
	on Clasroom	405	-4520	-11138	-15658	-15658 FPIU-2-18	3	2	2.70	0.12	16100	580	3	985
	ech	150	-944	-4125	-10138	-10138 FPIU-2-25	3	2	0.40	0.07	10300	440	1	740
	on Classroom	405	-4500	-11138	-15638	-15638 FPIU-2-19	8	2	2.70	0.12	16100	280	3	985
	ech	150	-944	-4125	1	with Room 218								
Γ	on Classroom	405	-5068	-11138	-16206	-16206 FPIU-2-20	3	2	9.60	0.10	16500	510	5	915
222 Hs Book Store		130	-3190	-3575	1	With 216 Is Book Store	ok Store							
224 Special Education Clasroom	on Clasroom	425	-5322	-11688	-17010	FPIU-2-24	3	2	12.00	0.10	17200	510	5	935
225 Special Education Clasroom	on Clasroom	255	-8211	-7013	-22236	FPIU-2-21	5	1	1.40	0.03	11200	625	2	880
		255		-7013		FPIU-2-22	2	1	1.40	0.03	11200	625	2	880
226 Special Education Clasroom	on Clasroom	405	-5173	-11138	-16311	-16311 FPIU-2-23	2	2	6.10	0.03	17700	450	3	855
301 Is Classroom		220	-6998	-15125	-22123	-22123 FPIU-3-12	2	2	15.00	0.05	23100	625	5	1175

305 307 308 309 311	le Classroom	0											•	
	II CIGSSICCIII	חלל	-602	-15125	-21204	-21204 FPIU-3-14	2	2	6.10	0.05	21200	650	33	1200
	Records	35	-1015	-963	-5156	-5156 FPIU-3-32	3	1	0.20	0.07	2800	440	1	295
	Guidance Suite	15	-586	-413	-3456	-3456 FPIU-3-20	3	1	0.20	0.07	2800	440	1	495
Г	Mail	40	-1405	-1100	-2505	-2505 FPIU-3-17	3	1	0.20	0.07	2800	440	1	480
	Gen Office	100	-4984	-2750	-7734	-7734 FPIU-3-15	3	1	0.70	90'0	8000	280	2	680
315	Principal	09	-3448	-1650	-5098	-5098 FPIU-3-18	3	1	0.20	0.07	2800	440	1	200
317	Is Classroom	585	-6301	-16088	-22389	-22389 FPIU-3-22	5	2	15.00	0.05	23100	625	2	1210
318	Is Music	490	-3320	-13475	-16795	-16795 FPIU-3-30	3	2	9.60	0.12	17700	580	2	1070
319	Is Science Lab	909	-7734	-16638	-24372	-24372 FPIU-3-23	5	2	15.00	90.0	26600	800	2	1405
320	Is Resource	260	-2023	-7150		with 322								
321	Is Science Prep	105	-3534	-2888	-6422	-6422 FPIU-3-24	33	1	0.20	0.15	0099	029	1	755
322	Is Resource	245	-2023	-6738	-17934	-17934 FPIU-3-29	3	2	12.00	0.15	18500	580	7	1085
323	Is Science Lab	302.5	-10560	-8319	-27198	-27198 FPIU-3-25	2	2	06:0	0.05	15100	625	1	928
		302.5		-8319		FPIU-3-26	2	2	06.0	0.05	15100	625	1	928
324	Is Classroom	260	-7284	-15400	-22684	-22684 FPIU-3-28	5	2	15.00	0.05	23100	625	2	1185
325	Is Special Education	375	-5373	-10313	-15686	-15686 FPIU-3-27	2	2	06:0	90.0	16300	800	1	1175
401	Hs Classroom	550	-7046	-15125	-22171	-22171 FPIU-4-12	2	2	15.00	0.05	23100	625	2	1175
	Hs Classroom	520	-6682	-14300	-20982	-20982 FPIU-4-13	5	2	15.00	0.05	23100	625	5	1145
405	Hs Classroom	525	-6252	-14438	-20690	-20690 FPIU-4-14	2	2	15.00	0.05	23100	625	2	1150
407	Records	35	-1015	-963	-5156	-5156 FPIU-4-32	3	1	0.20	0.07	2800	440	1	265
409	Mail	40	-1405	-1100	-2505	-2505 FPIU-4-17	3	1	0.20	0.07	2800	440	1	480
411	Gen Office	100	-4594	-2750	-7344	-7344 FPIU-4-15	3	1	0.70	0.10	2000	510	2	610
415	Principal	45	-3448	-1238	-4686	-4686 FPIU-4-18	3	1	0.20	0.07	2800	440	1	485
417	Hs Project Room	295	-6480	-15538	-22018	-22018 FPIU-4-21	5	2	15.00	0.05	23100	625	2	1190
418	Hs Music	450	-5482	-12375	-17857	-17857 FPIU-4-30	5	2	15.00	0.03	18900	450	5	900
419	Hs Project Room	265	-6480	-15538	-22018	-22018 FPIU-4-22	5	2	15.00	0.05	23100	625	5	1190
420	Hs Music Storage	09	-2321	-1650	-3971	-3971 FPIU-4-29	3	1	0.20	0.07	2800	440	1	200
421	Hs Classroom	520	-6631	-14300	-20931	-20931 FPIU-4-23	5	2	15.00	0.05	23100	625	5	1145
422	Hs Resource	280	-2216	-7700	-9916	-9916 FPIU-4-28	3	2	0.40	0.07	10300	440	1	720
423	Hs Classroom	220	-8633	-15675	-24308	-24308 FPIU-4-24	5	2	15.00	0.08	26600	800	5	1370
424	Hs Classroom	550	-6631	-15125	-21756	-21756 FPIU-4-27	5	2	15.00	0.05	23100	625	5	1175
425	Hs Classroom	285	-7199	-7838	-22874	-22874 FPIU-4-25	2	2	6.10	0.01	12900	275	3	260
		285		-7838		FPIU-4-26	5	2	6.10	0.01	12900	275	3	260
	Mediation	80	-274	-2200	-2474	-2474 FPIU-5-23	3	1	0.20	0.07	2800	440	1	520
508	Hs Supervisory	40	-619	-1100	-1719	-1719 FPIU-5-9	3	1	0.20	0.07	5800	440	1	480
516	Hs Guidance Suite	45	-900	-1238	-2138	-2138 FPIU-5-20	3	1	0.20	0.07	5800	440	1	485
517	Hs Special Education	375	-3277	-10313	-13590	-13590 FPIU-5-10	3	2	2.70	0.07	14000	440	3	815
518	Hs College Suite	40	-497	-1100	-1597	-1597 FPIU-5-22	3	1	0.20	0.07	2800	440	1	480
519	Hs Science Lab	395	-7905	-10863	-29630	29630 FPIU-5-11	3	2	2.70	0.10	15100	510	3	1300
		395		-10863		FPIU-5-28	3	2	2.70	0.10	15100	510	3	
521	Science Prep	185	-3344	-5088	-8432	-8432 FPIU-5-12	3	1	2.40	0.05	8700	510	4	695
	Hs Receiving Vestibule	45	-1201	-1238	-2439	-2439 FPIU-5-18	3	1	0.20	0.07	2800	440	1	485
523	Science Lab Demo	312.5	-9246	-8594	-26434	-26434 FPIU-5-13	5	2	0.90	0.03	13300	450	1	763
		312.5		-8594		FPIU-5-14	2	2	06.0	0.03	13300	450	1	763

							+	†					+	
		312.5		-8594		FPIU-5-14	2	2	0.90	0.03	13300	450	1	763
524	Hs Receiving	20	-1470	-1375	-2845	-2845 FPIU-5-17	3	1	0.20	0.07	2800	440	1	490
525	Science Lab Demo	315	-6872	-8663	-24197	-24197 FPIU-5-15	5	2	6.10	0.01	12900	275	3	290
		315		-8663		FPIU-5-16	5	2	6.10	0.01	12900	275	3	290
109A	Supervisor	40	-2060	-1100	-3160	-3160 FPIU-1-6	3	1	0.20	0.07	2800	440	1	480
126A	Furniture Storage	85	-3022	-2338	-5360	-5360 FPIU-1-13	e	1	0.20	0.07	2800	440	1	525
1268	Storage	20	-1729	-1375	-3104	-3104 FPIU-1-14	3	1	0.20	0.07	2800	440	1	490
126C	Vault W. Anteroom	20	-2534	-1375	-3909	3909 FPIU-1-15	3	1	0.20	0.07	2800	440	1	490
308A	Office	20	-732	-550		with 308								
308B	Office	20	-625	-550		with 308								
308B	Guidance Room	40	-1220	-1100	-2320	-2320 FPIU-3-21	3	1	0.20	0.07	2800	440	1	480
308D	Meeting	120	-732	-3300	-4032	4032 FPIU-3-32	3	1	0.20	0.07	2800	440	1	
309A	Waiting	90	-703	-2475		with 307 Records	sp.							
311A	Copy	20	-1720	-550	-2270	-2270 FPIU-3-16	3	1	0.20	0.07	2800	440	1	460
318A	Is Music Storage	20	-512	-550	-3484	-3484 FPIU-3-33	e	1	0.20	0.07	2800	440	1	200
318B	Is Music Storage	25	-626	-688		with 318A								
318C	Is Music Storage	15	969-	-413		with 318A								
409A	Waiting	06	-703	-2475		with 407								
411A	Copy	20	-1720	-550	-2270	FPIU-4-16	8	1	0.20	0.07	2800	440	1	460
418A	Hs Music Storage	15	-348	-413	-2639	FPIU-4-33	3	1	0.20	0.07	2800	440	1	485
418B	Hs Music Storage	20	-596	-550		with 418A								
418C	Hs Music Storage	10	-457	-275		with 418A								
516A	Hs Guidance Conf	120	-304	-3300	-3604	-3604 FPIU-5-26	3	1	0.20	0.07	2800	440	1	
5168	Hs Guidance Office	40	-523	-1100	-4860	-4860 FPIU-5-19	3	1	0.20	0.07	2800	440	1	260
516C	Hs Guidance Office	40	-523	-1100		with 516B								
518A	Hs College Office	40	-514	-1100		with 516B								
5188	Hs College Conference	100	-468	-2750	-3218	-3218 FPIU-5-25	3	1	0.20	0.07	5800	440	1	540
110	Vestibule	20	-2465	-1375	-3840	-3840 FPIU-1-12	3	1	0.20	0.07	5800	440	1	490
	Corridor 1st Floor West	280	-14247	-7700	-21947	-21947 FPIU-1-7	2	2	15.00	0.05	23100	625	5	905
	Corridor 2nd Floor South	125	-7528	-3438	-10966	-10966 FPIU-2-15	3	2	0.40	0.12	11300	580	1	705
	Corridor 3rd Floor West	135	-9331	-3713	-13044	-13044 FPIU-3-19	5	2	06'0	0.03	13300	450	1	585
	Corridor 4th Floor West	67.5	-10699	-1856	-12555	12555 FPIU-4-19	5	2	0.90	0.03	13300	450	1	518
		67.5		-1856	-1856	-1856 FPIU-4-20	5	1	0.40	0.01	4500	100	1	168
	Corridor 5th Floor East	210	-7607	-5775	-13382	-13382 FPIU-5-21	3	2	2.70	0.07	14000	440	3	650
	Corridor 1st Floor East	110	-5269	-3025	-8294	-8294 FPIU-1-8	3	1	0.70	0.15	8300	650	2	760
	Corridor 2nd Floor East	145	-7207	-3988	-11195	-11195 FPIU-2-27	33	2	0.40	0.12	11300	280	1	725
	Corridor 3rd Floor East	82	-4126	-2338	-6464	-6464 FPIU-3-31	3	1	0.20	0.15	9600	650	1	735
	Corridor 4th Floor East	82	-4126	-2338	-6464	-6464 FPIU-4-31	3	1	0.20	0.15	0099	650	1	735

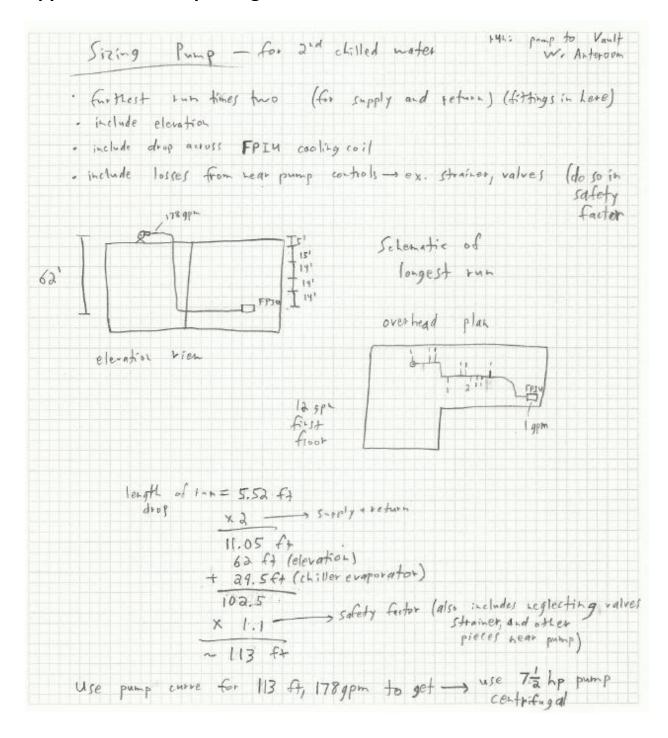
Appendix T – Heating Coil FPIU Sizing

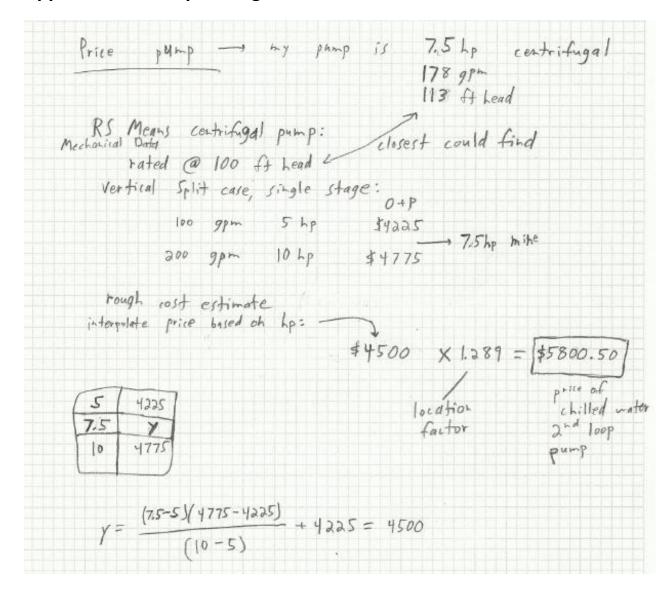

Model: KLPS Water Coil Data

Unit	Rows		Head				Α	ir Flow, CFI	VI			
Size		G.P.M.	Loss	440	510	580	650	720	790	860	930	1000
		1.0	0.2	5.8	6.1	6.4	6.6	6.8	7.0	7.2	7.3	7.4
3	1 Row	2.0	0.7	7.1	7.6	8.0	8.3	8.6	8.9	9.2	9.5	9.7
		4.0	2.4	8.1	8.7	9.2	9.7	10.1	10.5	10.9	11.3	11.6
		6.0	4.9	8.5	9.2	9.8	10.3	10.8	11.3	11.7	12.1	12.5
		Airsid	eΔPS	0.04	0.05	0.06	0.08	0.09	0.11	0.13	0.15	0.17
		1.0	0.4	10.3	10.8	11.3	11.7	12.0	12.3	12.6	12.8	13.0
3	2 Row	3.0	2.7	14.0	15.1	16.1	17.0	17.7	18.5	19.1	19.7	20.3
		5.0	6.6	15.2	16.5	17.7	18.8	19.7	20.6	21.5	22.2	23.0
		7.0	12.0	15.8	17.2	18.5	19.7	20.8	21.8	22.7	23.6	24.4
		Airsid	e∆PS	0.07	0.10	0.12	0.15	0.18	0.21	0.24	0.28	0.32

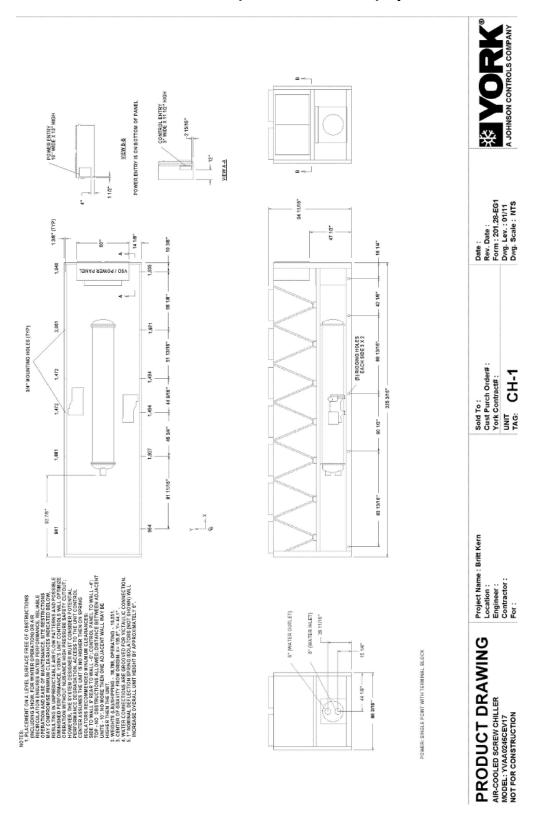
Unit	Rows		Head				Α	ir Flow, CFI	VI			
Size		G.P.M.	Loss	100	275	450	625	800	975	1150	1325	1500
		1.0	0.4	4.6	7.2	8.4	9.1	9.7	10.3	10.7	11.1	11.5
5	1 Row	2.0	1.4	5.0	8.4	10.1	11.2	12.2	13.2	14.0	14.7	15.3
		4.0	4.8	5.2	9.2	11.4	12.9	14.1	15.5	16.6	17.6	18.5
		6.0	9.9	5.3	9.6	11.9	13.6	15.0	16.5	17.8	19.0	20.1
		Airsid	e∆PS	0.01	0.01	0.02	0.03	0.04	0.06	0.08	0.10	0.13
		1.0	0.9	5.6	10.6	13.3	15.1	16.3	17.1	17.8	18.4	18.9
5	2 Row	3.0	6.1	5.9	12.9	17.7	21.2	24.1	26.4	28.3	30.0	31.4
		5.0	15.0	6.0	13.5	18.9	23.1	26.6	29.5	32.0	34.2	36.2
		7.0	27.2	6.1	13.7	19.4	24.0	27.8	31.1	33.9	36.4	38.7
		Airsid	e∆PS	0.01	0.01	0.03	0.05	0.08	0.11	0.15	0.19	0.24

All data is based on: 72 Deg F Entering Air, 140 Deg F Entering Water, at 0 feet above Sea Level. Program calculations assume 35 % Glycol


Appendix U – RS Means New Duct Cost Calculation


Appendix V – Secondary Chilled Water Loop Head Calculation

	Rate	Pipe	Head per	Pipe	Value	(frictio		Equiv	Equiv	Lost
	(gpm	Size	100 ft,	Lengt	from	n		Length	Length	Head
Section	/ebiii	(inches)	ft/100ft	h (ft)	Figure		К	(ft)	(ft)	(ft)
Pump to 5th	178	4	1.75	5	rigure	ractory	0	0	5	0.0875
Standard Tee	145	4	1.4		20	0.017	0.34	7.5	7.5	0.105
5th to 4th	145	4	1.4	15		0.027	0.01		15	0.21
Standard Tee	98	4	0.7		20	0.017	0.34	7.5	7.5	0.0525
4th to 3rd	98	4	0.7	14			0		14	0.098
Standard Tee	52	2.5	2		20	0.018	0.36	5.5	5.5	0.11
3rd to 2nd	52	2.5	2	14			0		14	0.28
Standard Tee	12	1.5	1.75		20	0.021	0.42	3	3	0.0525
2nd to 1st	12	1.5	1.75	14			0		14	0.245
Standard Elbov	12	1.5	1.75		30	0.021	0.63	4	4	0.07
Standard Tee	11	1.25	2		20	0.022	0.44	2.5	2.5	0.05
1st Flr Run	11	1.25	2	17.5			0		17.5	0.35
Standard Tee	10	1.25	1.75		20	0.022	0.44	2.5	2.5	0.04375
1st Flr Run	10	1.25	1.75	7.5			0		7.5	0.13125
Standard Tee	9	1.25	1.5		20	0.022	0.44	2.5	2.5	0.0375
1st Fir Run	9	1.25	1.5	3			0		3	0.045
Standard Elbov	9	1.25	1.5		30	0.022	0.66	3.5	3.5	0.0525
1st Fir Run	9	1.25	1.5	9			0		9	0.135
Standard Elbov	9	1.25	1.5		30	0.022	0.66	3.5	3.5	0.0525
1st Flr Run	9	1.25	1.5	13			0		13	0.195
Standard Tee	8	1.25	1.25		20	0.022	0.44	2.5	2.5	0.03125
1st FIr Run	8	1.25	1.25	40			0		40	0.5
Standard Tee	7	1.25	0.9		20	0.022	0.44	2.5	2.5	0.0225
1st FIr Run	7	1.25	0.9	4			0		4	0.036
Standard Tee	6	1	2.5		20	0.023	0.46	1.75	1.75	0.04375
1st FIr Run	6	1	2.5	8.25			0		8.25	0.20625
Standard Tee	4	1	1.4		20	0.023	0.46	1.75	1.75	0.0245
1st Flr Run	4	1	1.4	3.5			0		3.5	0.049
Standard Tee	3	1	0.8		20	0.023	0.46	1.75	1.75	0.014
1st Flr Run	3	1	0.8	10.75			0		10.75	0.086
Standard Tee	2	0.5	5		20	0.027	0.54	1.1	1.1	0.055
1st Flr Run	2	0.5	5	7			0		7	0.35
Standard Tee	1	0.5	3		20	0.027	0.54	1.1	1.1	0.033
1st Flr Run	1	0.5	3	51.5			0		51.5	1.545
45 Elbow	1	0.5	3		16	0.027	0.432	0.9	0.9	0.027
45 Elbow	1	0.5	3		16	0.027	0.432	0.9	0.9	0.027
Standard Elbov	1	0.5	3		30	0.027	0.81	1.5	1.5	0.045
Ball Valve	1	0.5	3		3	0.027	0.081	0.15	0.15	0.0045
FPIU	1	0.5					0		0	0.02
									total:	5.52


Appendix W – Pump Sizing Schematic

Appendix X – Pump Pricing

Appendix Y – YVAA0245CEV17 (225 Ton Chiller) Specifications

Air Cooled Screw Chiller **Performance Specification**

Unit Tag	Qty	Model No.	Capacity (Tons)	Volts/Ph/Hz	Refrigeran
CH-1	1	YVAA0245CEV17	225.0	200/3/60	R134a
Pin:					
YVAA0245CEV17BA VS		ONTROLS PIPING CO XEAXLXXXXXX 44XOSXX S		MXV 1X1XX	XXXX BXS
5 10 15	2	0 25 30 35	40 45	50 55	40
					

Evaporator Da	ta	Evaporator Data	(Cont.)	Performance I	Data
EWT (°F)	53.0	Min. Flow Rate (gpm)	300.0	EER / COP	10.5 / 3.1
LWT (°F)	44.0	Max. Flow Rate (gpm)	1150.0	NPLV	17.4 / 5.1
Design Flow Rate (gpm)	635.2			Minimum Unit Capacity	10 %
Pressure Drop (ft.)	15.8	Condenser D	ata	Physical Da	ta
Fluid	P.G. 30.0%	Ambient Temp. Design (°F)	95.0	Rigging Wt. (lbs.)	18788
Fouling Factor	0.00010	Altitude (ft.)	0	Operating Wt. (lbs.)	19551
Water Volume (gal)	73.0	Ambient Temp. Min (°F)	0.0		

	Electr	ical Data		
Circuit	1	2	3	4
Compressor RLA	399	334		
Fan QTY/FLA (each)	8/5.6	6/5.6		

	Sin	ngle Point		
Min. Circuit Ampacity	919			
Recommended Fuse/CB Rating	1200			
Max. Inverse Time CB Rating	1200			
Max. Dual Element Fuse Size (Amps)	1200			
Unit Short Circuit Withstand (STD)	30kA			
Wire Lugs Per Phase*	4			
Wire Range (Lug Size)	#2 - 600 KCM			
Unit Power Factor	0.95			
Control KVA	2.0		Operating Cond	ition Electrical Data
Starter Type	VSD		Compressor kW	233.0
			Total Fan kW	24.0
			Total kW	257.0

Notes:

RATED OUTSIDE THE SCOPE OF AHRI STANDARD 550/590.

^{*} Use Copper Conductors only

		Part Load Rating Data		
Load %	Ambient (°F)	Capacity (Tons)	Compressor kW	Unit Efficiency
100.0	95.0	225.0	233.0	10.5 / 3.1
75.0	80.0	168.7	125.4	14.4 / 4.2
50.0	65.0	112.5	61.4	19.2 / 5.6
25.0	55.0	56.3	25.8	21.8 / 6.4

York Contract No.: Project Name: BRITT KERN Printed: 03/02/2012 AT 16:49 Unit Version: 10.03.FDW (Data Source: v5_79) Performance Unit Folder: CH-1 YORKworks v.12.01a Page 1 of 2

Air Cooled Screw Chiller Performance Specification

	SOUND POWER LEVELS (In Accordance with AHRI 370) – Octave Band Center Frequency, Hz											
YVAA024	YVAA0245CEV17 (Equipped with Low Sound Fans with Variable Speed Control)											
Load %	Ambient (°F)	63	125	250	500	1K	2K	4K	8K	LWA		
100.0	95.0	98.0	98.0	98.0	99.0	96.0	91.0	87.0	83.0	100.0		
75.0	80.0	94.0	95.0	95.0	95.0	93.0	86.0	82.0	78.0	97.0		
50.0	65.0	90.0	90.0	90.0	91.0	88.0	83.0	79.0	75.0	93.0		
25.0	55.0	86.0	89.0	87.0	87.0	85.0	78.0	74.0	70.0	89.0		

		SOUND PRESSURE LEVELS in dB at 30.0 (ft.) **												
YVAA024	YVAA0245CEV17 (Equipped with Low Sound Fans with Variable Speed Control)													
Load %	Ambient (°F)	63	125	250	500	1K	2K	4K	8K	dBA				
100.0	95.0	71.0	71.0	71.0	72.0	69.0	64.0	60.0	56.0	73.0				
75.0	80.0	67.0	68.0	68.0	68.0	66.0	59.0	55.0	51.0	70.0				
50.0	65.0	63.0	63.0	63.0	64.0	61.0	56.0	52.0	48.0	66.0				
25.0	55.0	59.0	62.0	60.0	60.0	58.0	51.0	47.0	43.0	62.0				

^{**} Chiller is assumed to be a point source on a reflecting surface (hemispherical radiation)

YVAA0245CEV17		Performance at AHR	rformance at AHRI Conditions					
Evaporator D)ata	Condenser Data		Performance Data				
EWT (°F)	54.0	Ambient Temp. (°F) 95.0		EER / COP	10.8 / 3.2			
LWT (°F)	44.0	Altitude (ft.)	0	EER IPLV/COP IPLV	17.8 / 5.2			
Flow Rate (gpm)	Flow Rate (gpm) 564.5			Capacity (Tons)	235.5			
Pressure Drop (ft.)	11.5							
Fluid	Water							
Fouling Factor 0.00010								
Water Volume (gal)	73.0							

Appendix Z - YCAL0033EE17(33.4 Ton Chiller) Specifications

Air Cooled Scroll Chiller Performance Specification

Unit Tag	Qty	Model No.			Capacity (Tons)		Volts/Ph/Hz	Refrigerant
CH-3	1	YCAL0033EE17			33.4		200/3/60	R410A
Pin:								
BASE MODEL	POWER.	CONTROLS	COMP PIPING		EVAPORATOR	COND	CABINET	WARR
YCAL0033EE17XEB	SDT	X AXXRLXX	XXX 54XX1X	XXX	XXXSXXX	XXX	1XXXXX1	BXXXXX
5 10 15		20 25	30	35	40	45	50	55 60

Evaporator D	ata	Condenser Data		Performance Data		
EWT (°F)	62.0	Ambient Temp. (°F)	90.0	EER / COP	12.4 / 3.6	
LWT (°F)	54.0	Altitude (ft.)	0	NPLV	16.1 / 4.7	
Design Flow Rate (gpm)	105.6	Min. Ambient Temp. (°F)	0.0	Physical Data		
Pressure Drop (ft.)	29.5	Max. Ambient Temp. (°F)	125.0	Rigging Wt. (lbs.)	2034	
Fluid	P.G. 30.0%			Operating Wt. (lbs.)	2077	
Fouling Factor	0.00010				·	
Water Volume. (gal)	5.2					

Electrical Data									
Circuit	1	2	3	4					
Compressor RLA	59.9/59.9								
Compressor Start Current (LRA)	425.0/425.0								
Fan QTY/FLA (each)	2/7.6								

	Sing	le Point		
Min. Circuit Ampacity	150.5			
Min. Non-Fused Disconnect (Amps)	200			
Min. Dual Element Fuse Size (Amps)	175			
Max. Dual Element Fuse Size (Amps)	200			
Min. Circuit Breaker (Amps)	175			
Max. Circuit Breaker (Amps)	200			
Wire Lugs Per Phase*	1			
Wire Range (Lug Size)	(1)#4 - 300			
Total Amps	135.0		Operating Condit	ion Electrical Data
Inrush (PW) Amps	425.0		Compressor kW	29.3
Starter Type	Across the Line		Total Fan kW	3.0
			Total kW	32.3

RATED OUTSIDE THE SCOPE OF AHRI STANDARD 550/590.

* Use Copper Conductors only

Notes:

Installing contractor must include vent and drain accommodations in the chilled water piping near the

A strainer, preferably 40 mesh, must be installed in the cooler inlet just ahead of the cooler. This is important to protect the cooler from the entrance of large particles which could cause damage to the evaporator.

Part Load Rating Data											
Load %	Ambient (°F)	Capacity (Tons)	Compressor kW	Unit Efficiency							
100.0	90.0	33.4	29.3	12.4 / 3.6							
50.0	69.5	19.2	11.9	17.2 / 5.0							

Project Name: BRITT KERN York Contract No.: Printed: 03/21/2012 AT 12:38 Unit Version: 12.02.FDW (Data Source: v5_81) Performance Unit Folder: CH-3 YORKworks v.12.02b Page 1 of 2

Air Cooled Scroll Chiller **Performance Specification**

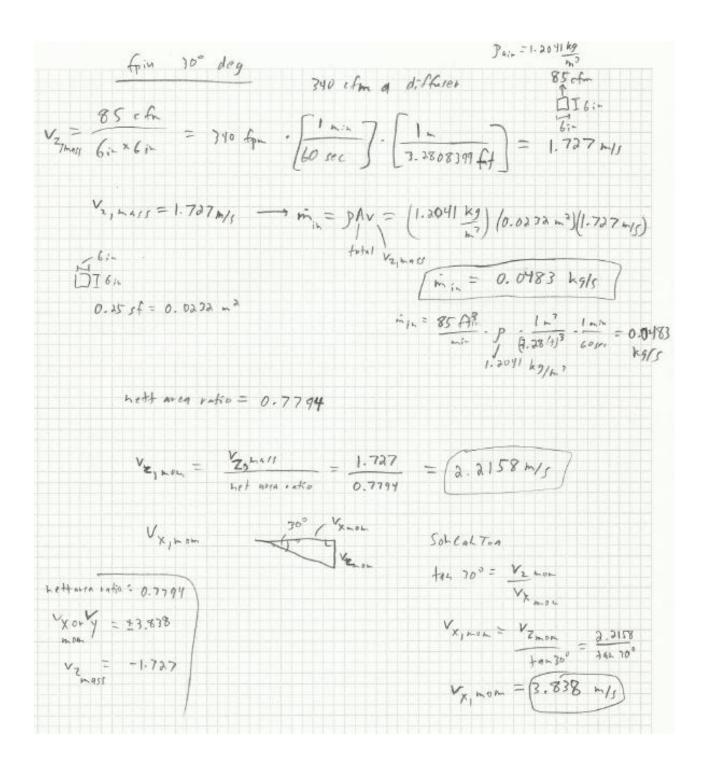
	SOUND PO	OWER LEV	VELS (In A	Accordance	with AHR	I 370) – Oc	tave Band	Center Fre	quency, H	Z
YCAL0033E	EE17	(Equipped	with Low S	ound Fans	d Fans)					
Load %	Ambient (°F)	63	125	250	500	1K	2K	4K	8K	LWA
100.0	90.0	95.0	90.0	93.0	91.0	85.0	82.0	77.0	74.0	92.0
50.0	69.5	92.0	87.0	90.0	88.0	82.0	79.0	74.0	71.0	89.0

	SOUND PRESSURE LEVELS in dB at 30.0 (ft.) ±±											
YCAL0033E	YCAL0033EE17 (Equipped with Low Sound Fans)											
Load % Ambient 63 125 250 (°F)				500	1K	2K	4K	8K	dBA			
100.0	90.0	68.0	63.0	66.0	64.0	58.0	55.0	50.0	47.0	65.0		
50.0	69.5	65.0	60.0	63.0	61.0	55.0	52.0	47.0	44.0	62.0		

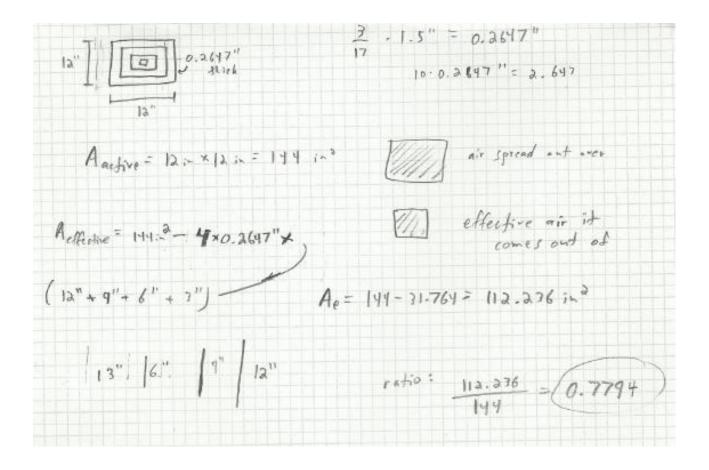
^{**} Chiller is assumed to be a point source on a reflecting surface (hemispherical radiation)

YCAL0033EE17		Performance at AHRI	Conditions			
Evaporator D	ata	Condenser Data		Performance Data		
EWT (°F)	54.0	Ambient Temp. (°F)	95.0	EER / COP	10.5 / 3.1	
LWT (°F)	44.0	Altitude (ft.)	0	EER IPLV/COP IPLV	14.5 / 4.2	
Flow Rate (gpm)	68.4			Capacity (Tons)	28.6	
Pressure Drop (ft.)	11.0					
Fluid	Water					
Fouling Factor	0.00010					
Water Volume (gal)	5.2					

AIR COOLED SCROLL LIQUID CHILLER YORK YCAL 60 HZ GUIDE SPECIFICATIONS


	SOUND POWER LEVELS (In Accordance with AHRI 370) – Octave Band Center Frequency, Hz									
	YCAL0033EE17									
Load %	Ambient (°F)	63	125	250	500	1K	2K	4K	8K	LWA
100.0	90.0	95.0	90.0	93.0	91.0	85.0	82.0	77.0	74.0	92.0
50.0	69.5	92.0	87.0	90.0	88.0	82.0	79.0	74.0	71.0	89.0

SOUND PRESSURE LEVELS in dB at 30.0 (ft.) ** YCAL0033EE17										
Load %	Ambient (°F)	63	125	250	500	1K	2K	4K	8K	dBA
100.0	90.0	68.0	63.0	66.0	64.0	58.0	55.0	50.0	47.0	65.0
50.0	69.5	65.0	60.0	63.0	61.0	55.0	52.0	47.0	44.0	62.0

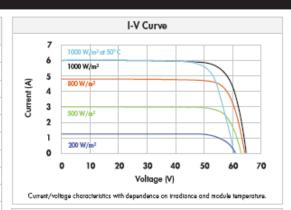

^{**} Chiller is assumed to be a point source on a reflecting (hemispherical radiation)

Appendix AA - Momentum Method

Appendix AB - Net Area Ratio

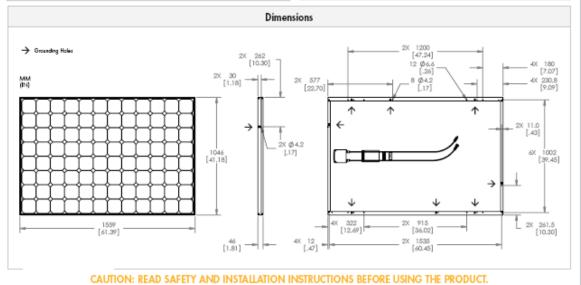
Appendix AC - SunPower 308 Solar Panel

E18 / 308 SOLAR PANEL SUNPOWER' EXCEPTIONAL EFFICIENCY AND PERFORMANCE **BENEFITS** Highest Efficiency SERIES SunPower™ Solar Panels are the most efficient photovoltaic panels on the market today. More Power Our panels produce more power in the same amount of space—up to 50% more than conventional designs and 100% more than thin film solar panels. Reduced Installation Cost More power per panel means fewer panels per install. This saves both time and money. Reliable and Robust Design The SunPower™ 308 Solar Panel provides today's highest efficiency Proven materials, tempered front glass, and performance. Utilizing 96 back-contact solar cells, the SunPower and a sturdy anodized frame allow 308 delivers a total panel conversion efficiency of 18.9%. The panel's panel to operate reliably in multiple mounting configurations. reduced voltage-temperature coefficient and exceptional low-light performance attributes provide outstanding energy delivery per peak power watt. SunPower's High Efficiency Advantage 18% 19% 20% 14% 15% 10% 10% 5% 0% Thin Film Conventional SunPower SunPower E18 Series E19 Series SPR-308E-WHT-D c(hr)nz


SUNPOWER[®]

E18 / 308 SOLAR PANEL

EXCEPTIONAL EFFICIENCY AND PERFORMANCE


Measured at Standard Test Conditions (STC): in:	trical Data abases of 1000W/m², AM 1.5, and set	Itemperature 25° C
Peak Power (+5/-3%)	P _{max}	308 W
Efficiency	ŋ	18.9 %
Rated Voltage	V _{mpp}	54.7 V
Rated Current	I _{mpp}	5.64 A
Open Circuit Voltage	V _{oc}	64.3 V
Short Circuit Current	I _{sc}	6.02 A
Maximum System Voltage	UL	600 V
Temperature Coefficients	Power (P)	-0.38% / K
	Voltage (V _{oc})	-176.6mV / I
	Current (I _{sc})	3.5mA/K
NOCT		45° C +/-2°
Series Fuse Rating		15 A

	Mechanical Data
Solar Cells	96 SunPower all-back contact monocrystalline
Front Glass	high transmission tempered glass
Junction Box	IP-65 rated with 3 bypass diodes
	Dimensions: 32 x 155 x 128 (mm)
Output Cables	1000mm length cables / MultiContact (MC4) connectors
Frame	Anodized aluminum alloy type 6063 (black)
Weight	41 lbs. (18.6 kg)

	lested Operating Conditions
Temperature	-40° F to +185° F (-40° C to + 85° C)
Max load	113psf 550 kg/m² (5400 Pa), front (e.g. snow) W/specified mounting configurations
	50 psf 245 kg/m² (2400 Pa) front and back – e.g. wind
Impact Resi	stance Hail 1 in (25 mm) at 52mph (23 m/s)

٧	Varranties and Certifications	
Warranties	25 year limited power warranty	
	10 year limited product warranty	
Certifications	Tested to UL 1703. Class C Fire Rating	

Visit sunpowercorp.com for details

WER and the SUNFOWER logo are trademarks or registered trademarks of Sur Fower Corporation.

Sunpowercorp.com
Document #00165243 Rev** / LTR_EN

Appendix AD - SunPower PowerGuard

SUNPOWER

BENEFITS

Non-Penetrating

Easily installed solar modules require no roof modifications or attachments

Lightweight

Aerodynamic, lightweight modules are easy to ship, handle, and install

Protects Your Roof

Protects rooftops from harsh weather, UV exposure and thermal cycling

Insulated to Reduce Costs

R-10 insulation saves up to 30% more energy by reducing a building's heating and cooling load

Deploys Rapidly

Interlocking, pre-engineered solar tiles lay directly on rooftop and install quickly without mechanical fastening

Scalable Design

Modular design scales easily for small to large-scale installations



Microsoft - 480 kW - Mountain View, California

SUNPOWER POWERGUARD

POWERGUARD®

INTERLOCKING SOLAR ROOF TILES PROTECT & INSULATE

PowerGuard is a simple, high-density system for rooftop installations. Its non-penetrating modular design delivers reliable, clean electricity while insulating and protecting your roof. PowerGuard's flat, lightweight solar tiles operate within your existing roof line and electrical system and install rapidly and securely without mechanical fastening.

sunpowercorp.com

SUNPOWER

POWERGUARD®

INTERLOCKING SOLAR ROOF TILES PROTECT & INSULATE

Specifications and Details (SPR-305)

Attribute	Specification
Tile Weight	4 lb/ft ²
Tile Dimensions	Range: 41.5" × 62.6"
R-Value	R-10
Roof Penetrations	None, except high-wind areas
Power Output	1.72 kWp/100 ft²
Deployment Option	Roof
High Wind Resistance	Up to 140 miles per hour
Warranty	Full system warranty

SunPower Solar Cells and Panels

PowerGuard features the most advanced and efficient solar cells and panels on the market

Key Attributes:

- · All-back-contact design reduces sun blockage for higher efficiency output up to 22.4%
- · 3.2 mm thick high transmission tempered glass enhances product stiffness and impact resistance
- · Lower temperature coefficient enhances high temperature operation & energy output

The PowerGuard technology is protected by US Patent Numbers 5,316,592, 5,505,788, RE 38,988 and 6,061,978. Other US and/or international patents issued or pending may apply.

About SunPower

SunPower designs, manufactures and delivers high-performance solar electric technology worldwide. Our high-efficiency solar cells generate up to 50 percent more power than conventional solar cells. Our high-performance solar panels, roof tiles and trackers deliver significantly more energy than competing systems.

Printed on recycled paper

sunpowercorp.com

Rev **

Appendix AE - Satcon 75 kW Inverter

PowerGate® Plus 75 kW

PVS-75 (208 V) PVS-75 (240 V) PVS-75 (480 V)

Unparalleled Performance

With their advanced system intelligence, next-generation Edge™ MPPT technology, and industrial-grade engineering, PowerGate Plus inverters maximize system uptime and power production, even in cloudy conditions.

Power Efficiency

Power Level	Output Power ¹	Efficiency ²
10%	7.5 kW	92.6%
20%	15 kW	95.6%
30%	22.5 kW	96.3%
50%	37.5 kW	96.7%
75%	56.25 kW	96.6%
100%	75 kW	96.3%

^{1 315}V minimum 2 240V model

Edge MPPT

Provides rapid and accurate control that boosts PV plant kilowatt yield

Provides a wide range of operation across all photovoltaic cell technologies

Printed Circuit Board Durability

Wide thermal operating range: -40° C (-40° F) to 85° C (185° F)

Conformal coated to withstand extreme humidity and air-pollution levels

Proven Reliability

Rugged and reliable, PowerGate Plus PV Inverters are engineered from the ground up to meet the demands of large-scale installations.

Low Maintenance

Modular components make service efficient

Safety

UBC Seismic Zone 4 compliant

Built-In DC and AC disconnect switches

Integrated DC two-pole disconnect switch isolates the inverter (with the exception of the GFDI circuit) from the photovoitaic power system to allow inspection and maintenance

Built-in isolation transformer

Protective covers over exposed power connections

PV Inverters | PowerGate® Plus 75 kW

PowerGate Plus 75 kW Specifications			UL/CSA
Input Parameters			
Maximum Array Input Voltage	600 VDC (UL)		•
Input Voltage Range (MPPT; Full Power)	315-600 VDC		•
Maximum Input Current	248 ADC		•
Output Parameters			
Output Voltage Range (L-L)	183-229 VAC	208 VAC	•
	211-264 VAC	240 VAC	•
	422-528 VAC	480 VAC	•
Nominal Output Voltage	208 VAC		•
	240 VAC		•
	480 VAC		•
Output Frequency Range	59.3-60.5 Hz		•
AC Voltage Range (Standard)	-12%/+10%		•
Nominal Output Frequency	60 Hz		•
Number of Phases	3		•
Maximum Output Current per Phase	208A	208 VAC	•
	181A	240 VAC	•
	91A	480 VAC	•
CEC-Weighted Efficiency	96%		•
Maximum Continuous Output Power	75 KW (75 KW)		•
Tare Losses	65.36 W	208 VAC	•
	71.84 W	240 VAC	•
	69.5 W	480 VAC	•
Power Factor at Pull Load	>0.99		•
Harmonic Distortion	<3%THD		

• Standard • Optional

PowerGate® Plus 75 kW

PowerGate® Plus 75 kW

UL/CSA

Output Options

PowerGate Plus 75 kW

UL/CSA 208 VAC Output
240 VAC Output
480 VAC Output

Streamlined Design

With all components encased in a single, space-saving enclosure, PowerGate Plus PV Inverters are easy to install, operate, and maintain.

Single Cabinet with Small Footprint

Convenient access to all components

Large in-floor cable glands make access to DC and AC cables easy

Rugged Construction

Engineered for outdoor environments

Output Transformer

Provides galvanic isolation

Matches the output voltage of the PV Inverter to the grid

@2009 Satcon Technology Corporation	
reserved Satcon, Satcon S-Type, and P	V View are
registered trademarks, and Edge is a ti	ademark, of
Satoon Technology Corporation, 6,09	

S	Satcon Corporate					
Z	Drydock Avenue					
В	oston, MA 02210					
P	617.897.2400					
F	617.897.2401					
E	sales@salcon.com					

Satcon West 2925 Bayview Drive Fremont, CA 94538 P 510.226.3800 F 510.226.3801 E salesysatcon.com

Storage Temperature Range	-30° C to +70° C	•
Cooling	Forced Air	•
Noise		
Noise Level	<65 dB(A)	•
Combiner		
Number of Inputs and Puse Rating	5 (100 ADC)	0
	6 (80 ADC)	0
Inverter Cabinet		
Enclosure Rating	NEMA 3R	•
Enclosure Finish (14-Gauge, Powder-Coated G90 Steel)	RAL-7032	•
Cabinet Dimensions (Height x Width x Depth	0	80" x 57" x 30.84"
Cabinet Weight		2,150 lbs.
Transformer		
Integrated Internal Transformer		•
Low Tap Voltage ¹	20%	•
Testing and Certification		
UL 1741, CSA 107.1-01, IEEE 1547, IEEE C62.41 C37.90.1, IEEE C37.90.2	1.2, IEEE C62.45, IEEE	•
UBC Zone 4 Seismic Rating	•	
Warranty		
Rve Years		•
Extended Warranty (up to 10, 15, or 20 years))	0
Extended Service Agreement		0
Intelligent Monitoring		
Satcon PV View* Plus	·	0
Satcon PV Zone		0
Third-Party Compatibility		

-20° C to +50° C

-300 € to ±700 €

Optional

PowerGate Plus 75 kW Specifications

Storage Temperature Pange

Operating Ambient Temperature Range (Full

Temperature

¹The 20% boost tap on the isolation transformer increases the AC voltage output range for applications where the solar array DC operating voltage is at or near the lower end of the DC input range. This boost allows for continued inverter operation at lower DC voltage input levels.

Note: Specifications are subject to change.

Saton Canada 835 Hamington Court Burlington, ON L7N 3P3 Canada P 905,639,4692 F 905,639,0061

E sales@satcon.com

 Satton Greece
 Satton Czech Republic

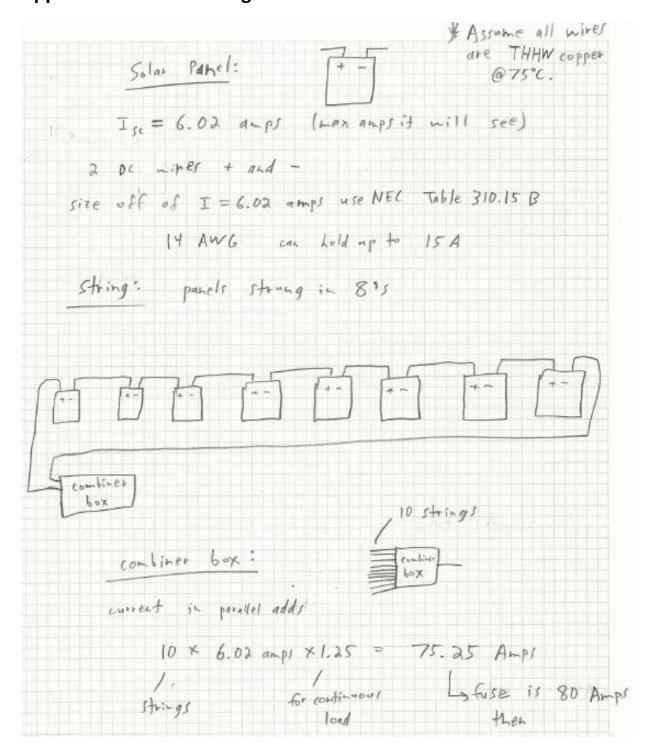
 Athanasiou Diakou 2 & Classic 7 Business Park

 Marathonaz Ave
 Jankovcova 1037/49

 Gerakas 15344
 170 00Praha 7

 Greece
 Czech Republic

 P-30 210 6654424
 P-420 255 729 610


 F-30 210 6654425
 F-420 255 729 611

E salas@satcon.com

Satcon China 1 MF. Central Tower 88 FuHua YiLu Fu Tian District Sherethen, China E salesyssatcon.com

E sales@satcon.com

Appendix AF - Wire Sizing Calculations

wire coming out of combiner box: (size off of fuge)
fuse 100 A, 2 conductors (still DC)
NEL Table 310.15(B) wire size conductors: 3 Aug
NEL Table 250.122 ground wire: 8 AWG sized of 80A fise
EMT sizing NEL Table (1: 121 3 ALIC -+ 11)
(3) 3 AWG ? [100+dnit] $(3) 3 AWG? [100+dnit]$ other combiner [1]
box 2
8 x 6.02 A x 1.25 = 60.2 Amp 7
8 x 6.02 A x 1.25 = 60.2 Amp 7 Strings continuous 70 A fuse
NEC Table 310.15 (B): (2) #4 AWG
ground nive - #8AWG 70A Fase
EMT -> (3) #4 AWG get 1" conduit
2-#4+#8 GW-1"C]

Inverter (AC side)

Size is 75 kW
$$\rightarrow$$
 224 panels x 308 W = 68,992 W

So 75 kW inverter will handle this.

30 \cdot 75:10²W = 208.2 Amps equation: IF-VA = Walts

208 V · $\sqrt{3}$ = 208.2 Amps: NEC Table 310.151B) 4/0

Grand sized aff breaker:

Granker is 225 Amps \rightarrow covers the amps

NEC Table 250.122: #10 AWG

Size EMT: 5 wives \rightarrow 30 all at 4/0

1 G

(5) 4/0 MEC Table C.1 \rightarrow EMT 2.5"

Cable coming out of inverter:

Appendix AG – NEC Tables used for Wire Sizing

Rating or Setting of Automatic Overcurrent	Size (AV	Size (AWG or kcmil)								
Device in Circuit Ahead of Equipment, Conduit etc., Not Exceeding (Amperes)		Aluminum or Copper-Clad Aluminum*								
15	14	12								
		10								
60	renit 12 breaker 10 size 8	8								
9: From 100	(126 8	6								
Leve) 200	6	4								
300	4	2								
400	3	1								
500	2	1/0								
600	1	2/0								
800	1/0	3/0								
1000	2/0	4/0								
1200	3/0	250								
1600	4/0	350								
2000	250	400								
2500	350	600								
3000	400	600								
4000	500	750								
5000	700	1200								
6000	800	1200								

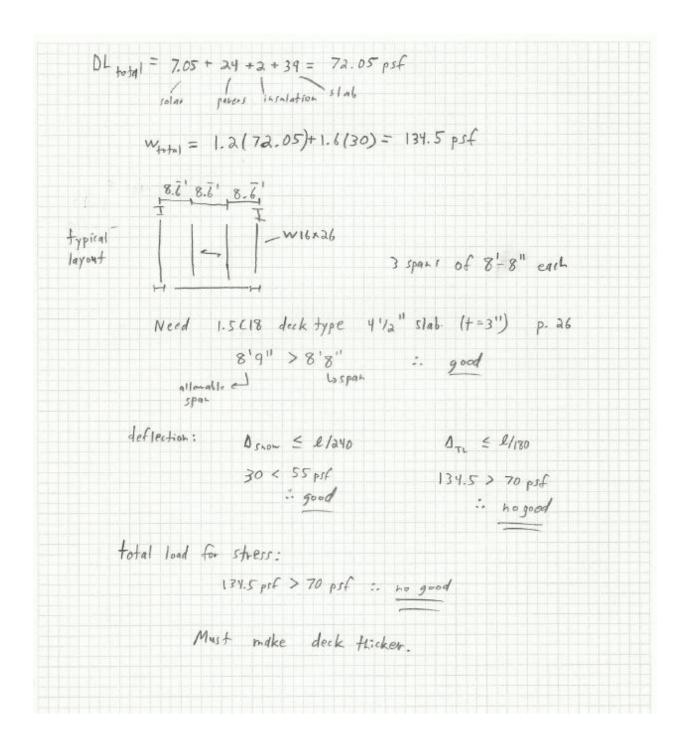
Table 310.15(B)(16) (formerly Table 310.16) Allowable Ampacities of Insulated Conductors Rated Up to a Volts, 60°C Through 90°C (140°F Through 194°F), Not More Than Three Current-Carrying Conductors i Earth (Directly Buried), Based on Ambient Temperature of 30°C (86°F)*

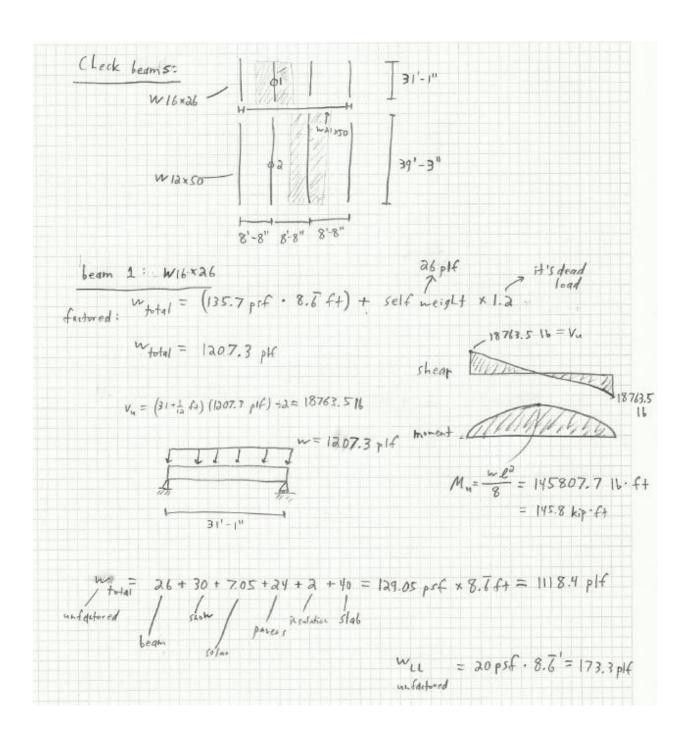
		Temperature	Rating of Conduc	tor [See Tab	le 310.104(A).]			
	60°C (140°F)	75°C (167°F)	90°C (194°F)	60°C (140°F)	75°C (167°F)	90°C (194°F)		
Size AWG or kcmil	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE	Types TBS, SA, SIS, THHN, THHW, THW-2, THWN-2, RHH, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2		
		COPPER		ALUMINUM OR COPPER-CLAD ALUMINUM				
18 AWG 16 14** 12** 10**	15 20 30 40	20 15 25 20 35 30 50	14 18 25 30 40 55	15 25 35	20 30 40			
6 4 3 2 1	55 65 70 85 85 100 95 115 110 130		75 95 115 130 145	40 55 65 75 85	50 65 75 90 100	55 75 85 100 115		
1/0 2/0 3/0 4/0 AMG	125 150 145 175 165 200 195 230		170 195 225 260	100 115 130 150	120 135 155 180	135 150 175 205		
250 k/sil 300 350 400 500	300 240 350 260 400 280		290 320 350 380 430	170 195 210 225 260	205 230 250 270 310	230 260 280 305 350		
600 700 750 800 900	385 400 410 410 460 475 490		475 520 535 555 585	285 315 320 330 355	340 375 385 395 425	385 425 435 445 480		
1000 1250 1500 1750 2000	455 545 495 590 525 625 545 650 555 665		615 665 705 735 750	375 405 435 455 470	445 485 520 545 560	500 545 585 615 630		

^{*}Refer to 310.15(B)(2) for the ampacity correction factors where the ambient temperature is other than 30°C (86°F). **Refer to 240.4(D) for conductor overcurrent protection limitations.

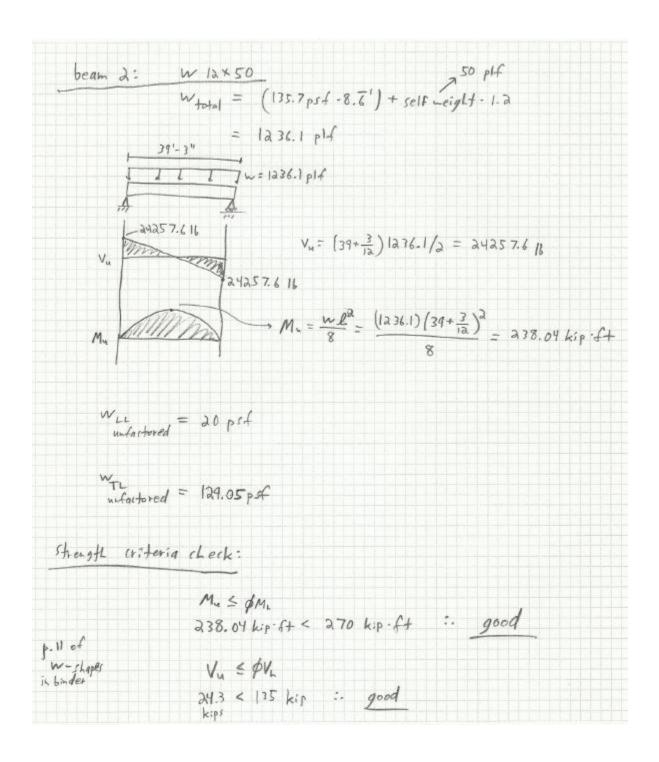
					CONDU	CTORS									
- 4	Conductor Size		Metric Designator (Trade Size)												
Туре	(AWG kemil)	16 (½)	21 (3/4)	27 (1)	35 (11/4)	41 (1½)	53 (2)	63 (2½)	78 (3)	91 (3½)	103				
RHH*,	6	1	3	4	8	11	18	32	48	63	81				
RHW*,	4	1	1	3	6	8	13	24	36	47	60				
RHW-2*,	3	1	1	3	. 5	7	12	20	31	40	52				
TW,	2	1	1	2	4	6	10	17	26	34	44				
THW,	1	1	1	1	3	4	7	12	18	24	31				
THHW, THW-2	1/0	0	1	1	2	3	6	10	16	20	26				
	2/0	0	1	1	1	3	5	9	13	17	22				
	3/0	0	1	1	1	2	4	7	11	15	19				
	4/0	0	0	1	1	1	3	6	9	12	16				
	250	0	0	1	1	1	3	5	7	10	13				
	300	0	0	1	1	1	2	4	6	8	11				
	350	0	0	0	1	1	1	4	6	7	10				
	400	0	0	0	1	1	1	3	5	7	9				
	500	0	0	0	1	1	1	3	4	6	7				
	600	0	0	0	1	1	1	2	3	4	6				
	700	0	0	0	. 0	1	1	1	3	4	5				
	750	0	0	0	0	1	1	1	3	4					
T.	800	0	0	0	0	1	1	1	3	3	5				
	900	0	0	0	0	0	1	1	2	3	4				
	1000	0	0	0	0	0	1	1	2	3	4				
	1250	0	0	0	0	0	1	1	1	2	3				
	1500	0	0	0	0	0	1	1	1	1	2				
	1750	0	0	0	0	0	0	1	1	1	2				
	2000	0	0	0	0	0	0	1	1	i	1				
THHN	14	12	22	35	61	NO.	120	241	264	176	700				

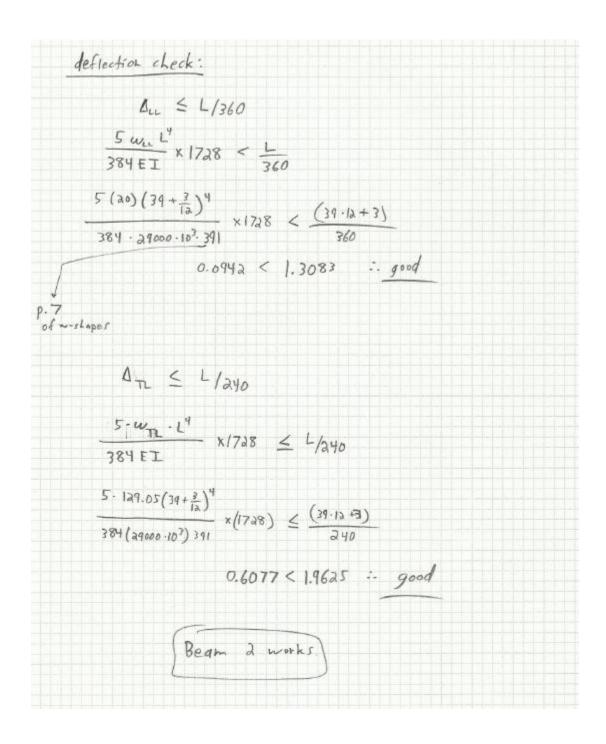
Appendix AH – Balanced Switchboard 2

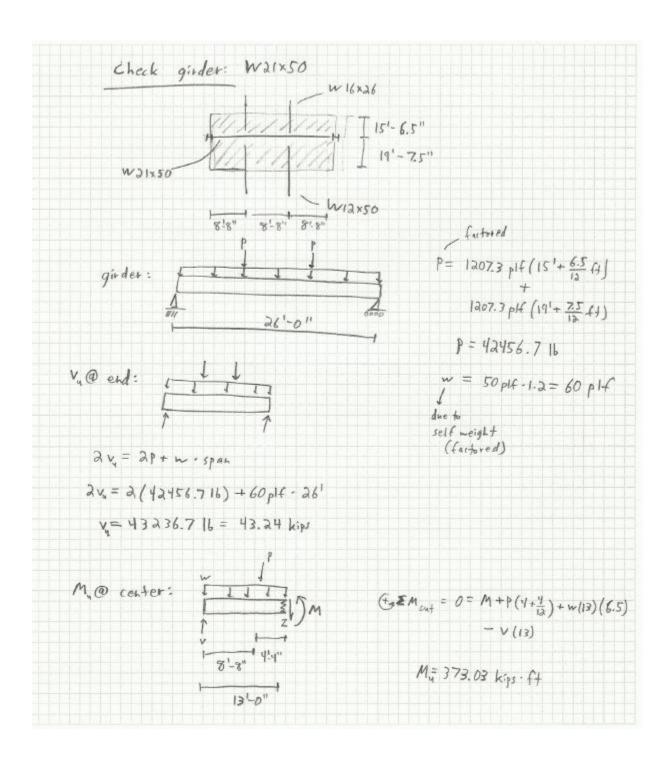

Voltage:	208	Main Breaker:	2000	A	Feeder:	7 sets	s of [(4)	500 kcmil	+ 350 kcmil	GW - 3.5" C]
		_		_	(#, size wi	rire &	conduit)		

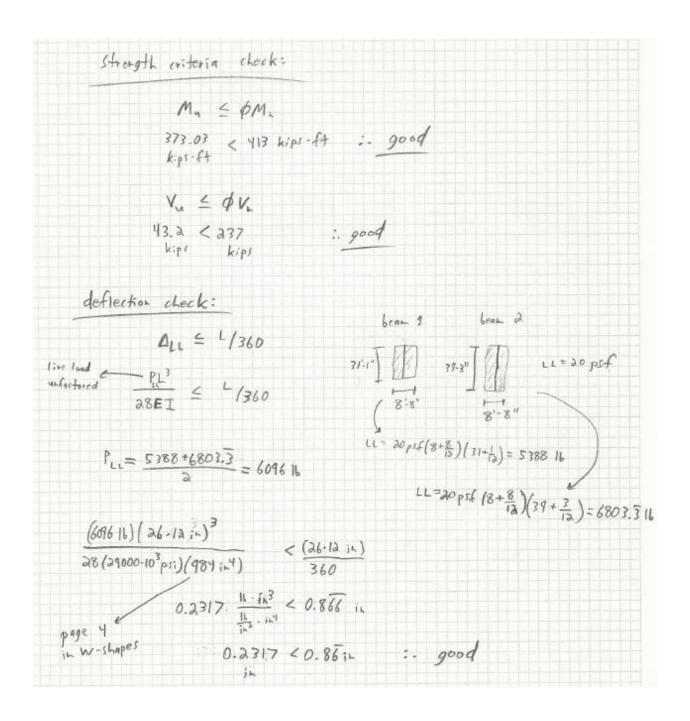

Description	LOAD (KVA))		Brk.	SV	/BI	D-2		LO	AD (K	VA)		Brk.	
	A	В	С	Amps	Trip (A)	Cond. Size	Ckt. #		Cond. Size	A	В	С	Amps	Trip (A)	Description
EDP-LS/ATS-LS	231			641	700	2 sets 400	1	2	3/0	66			183	200	Panels (1-3)LP-A
		231		641	700	2 sets 400	3	4	3/0		66		183	200	
			231	641	700	2 sets 400	5	6	3/0			66	183	200	
Panel 5DP-K1	107			297	300	350	7	8	1	45			125	125	Panels (4-5)LP-A
		107		297	300	350	9	10	1		45		125	125	
			107	297	300	350	11	12	1			45	125	125	
Panel 3LP-DIM-1	57			159	175	2/0	13	14	2/0	57			158	175	Panel 3LP-DIM-2
		57		159	175	2/0	15	16	2/0		57		158	175	
			57	159	175	2/0	17	18	2/0			57	158	175	
Panels (1-2)AP-B	42			117	125	1	19	20	4/0	75			208	225	Inverter
		42		117	125	1	21	22	4/0		75		208	225	
			42	117	125	1	23	24	4/0			75	208	225	
Panels (3-4)AP-B	70			194	200	3/0	25	26							
		70		194	200	3/0	27	28							
			70	194	200	3/0	29	30							
Panels (3-5)AP-A	53			147	150	1/0	31	32							
		53		147	150	1/0	33	34							
			53	147	150	1/0	35	36							
Panels (1-2)AP-A	63			175	175	2/0	37	38							
		63		175	175	2/0	39	40							
			63	175	175	2/0	41	42							
	623	623	623							243	243	243			

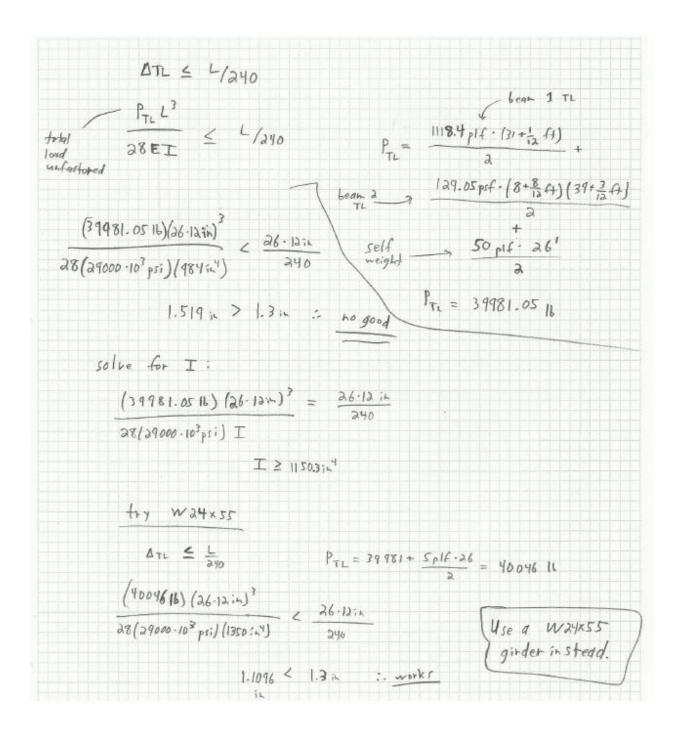
Total Load on Phase A: 866 KVA Total Load on Phase B: KVA 866 Total Load on Panel: 866 kVA Total Load on Phase C: 866 2403 KVA Α Feeder Demand Amp: Demand Factor: 8.0 1963 (applied to everything but Inverter) (Size main breaker off demand amps.)

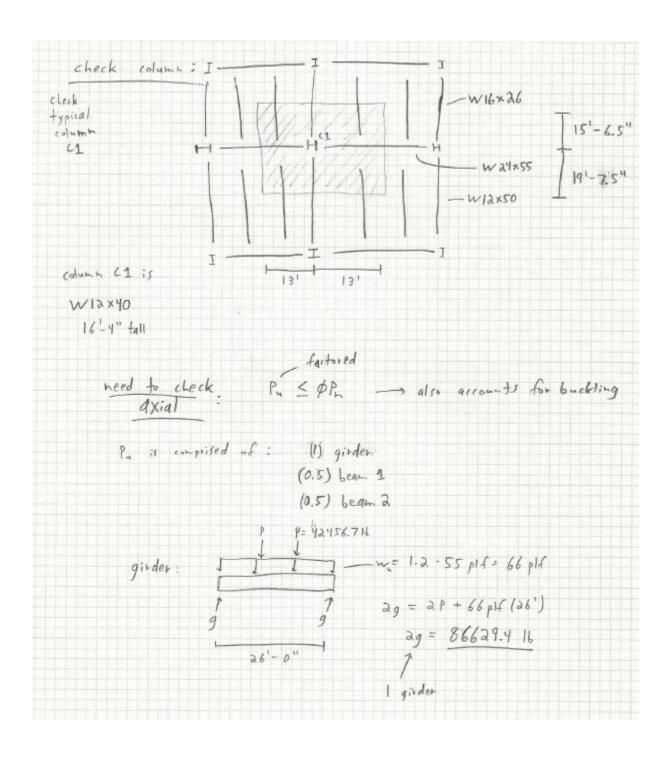

Appendix AI – Structural Calculations

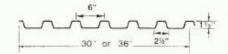







	Strength criteria check: Factored nomes:) $M_{\rm M} \leq \phi M_{\rm h} = 0.9 {\rm Fy} {\rm Zx} = 166 {\rm kip} \cdot {\rm ft}$ P-III of W-slapes it binder 145.8 kip-ft < 166 kip-ft = good
	V. ≤ \$ Vn = 106 kips
	18.7635 kips < 106 kips : good
	deflection check:
	or span length in inches
	Sparis ALL & L/360
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ayour 10- psi 301 in (p. 5 in W-shapes) for Ix-xxxis
	$\frac{5 \cdot 20 \cdot (71 + \frac{1}{12})^4}{384 \cdot 29000 \cdot 10^3 \cdot 301} \times 1728 < 1.0361$
	384-390min ³ 301 × 1728 < 1.0361
	0.0481 × 1.0361 :. good
	10TL ≤ L/240
28 1	$\times \frac{5 \cdot (29.05)(31 + \frac{1}{12})^4}{384 \cdot 2900010^2 \cdot 301} < \frac{(31 \cdot 2 + 1)}{240}$
	03105 > 1.55 : good Beam 1 works.





Appendix AJ – Vulcraft Non-Composite Deck

1.5 C CONFORM

MAXIMUM CONSTRUCTION CLEAR SPANS (S.D.I. CRITERIA)

Total Slab	Deck	Weight		NW Concre I=9 145 Pc		Weight		W Concret =14 110 P	
Depth	Type	PSF	1 Span	2 Span	3 Span	PSF	1 Span	2 Span	3 Span
	1.5C24	37	5-4	7- 1	7-2	28	5-9	7-8	7-9
3 1/2"	1.5C22	37	4-7	6- 1	6-2	29	5-0	6-7	6-8
(t=2")	1.5C20	38	5-5	7-3	7-4	29	5-11	7- 10	7- 11
400000	1.5C18	38	6-6	8-6	8-10	30	7-1	9-3	9-7
	1.5C24	43	5- 1	6-9	6-10	33	5-6	7-4	7-5
4"	1.5C22	43	4-5	5- 10	5-11	33	4-9	6-4	6-5
(t=2 1/2")	1.5C20	44	5-2	6-11	7-0	34	5-8	7-6	7-7
	1.5C18	44	6-2	8-1	8-5	34	6-9	8-10	9-2
-	1.5C24	49	4- 10	6-5	6-7	38	5-3	7-1	7-2
4 1/2"	1.5C22	49	4-2	5-7	5-8	38	4-7	6-1	6-2
(t=3")	1.5C20	50	4-11	6-8	6-8	38	5-5	7-3	7-4
	/1.5C18	50	5-10	7-9	8-0	39	6-5	8-6	8-9
	1.5C24	55	4-8	6-2	6-4	42	5-1	6-10	6- 11
5"	1.5C22	55	4-0	5-5	5-6	42	4-5	5- 11	5- 11
(t=3 1/2")	1.5C20	56	4-9	6-4	6-5	43	5-2	7-0	7-1
Per les autorités	1,5C18	56	5-7	7-5	7-8	43	6-2	8-2	8-5
	1.5C24	61	4-6	5- 11	6-1	47	4-11	6-7	6-8
5 1/2"	1.5C22	61	3-11	5-3	5-3	47	4-3	5-8	5-9
(t=4")	1.5C20	62	4-7	6-2	6-3	47	5-0	6-9	6- 10
(6)	1.5C18	63	5-5	7-2	7-5	48	6-0	7- 11	8-2
2072	1.5C24	67	4-4	5-9	5-11	51	4-9	6-4	6-6
6"	1.5C22	68	3-9	5- 1	5-1	52	4-2	5-6	5-7
(t=4 1/2")	1.5C20	68	4-5	5-11	6-0	52	4-10	6-6	6-7
	1.5C18	69	5-3	6-11	7-2	53	5-9	7-8	7-11
	1.5C24	73	4-2	5-7	5-9	56	4-7	6-2	6-3
6 1/2"	1.5C22	74	3-8	4-11	5-0	56	4-0	5-5	5-5
(t=5")	1.5C20	74	4-3	5-9	5- 10	57	4-8	6-4	6-5
STATE OF THE STATE	1.5C18	75	5-1	6-8	6-11	57	5-7	7-5	7-8

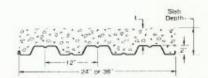
REINFORCED CONCRETE SLAB ALLOWABLE LOADS

Total					Superi	imposed Un	form Load	(psf) — 3 Sp	pan Conditio	on:			
Slab	Reinforce	ement	Ari				lear Span (
Depth	W.W.F.	As	4-0	4-6	5-0	5-6	6-0	6-6	7-0	7-6	8-0	8-6	9-0
NOT Y	6X6-W2.1XW2.1	0.042"	108	86				1000	VISO.	1000000	1	1	
3 1/2"	6X6-W2.9XW2.9	0.058	147	116		1			1				
(t=2)*	4X4-W2.9XW2.9	0.087	214	169									
	6X6-W2.1XW2.1	0.042"	136	108	87	72							
4"	6X6-W2.9XW2.9	0.058	185	147	119	98				1			
(t=2 1/2")	4X4-W2.9XW2.9	0.087	272	215	174	144							
STREET, STREET,	6X6-W2.1XW2.1	0.042"	164	129	160	132	111	95	82				
4 1/2"	6X6-W2.9XW2.9	0.058*	224	177	215	177	149	127	110	1			
(1=3")	4X4-W2.9XW2.9	0.087	329	260	318	263	221	188	162				2
	6X6-W2.9XW2.9	0.058*	262	207	264	218	183	156	135	117			
5"	4X4-W2.9XW2.9	0.087	387	306	392	324	272	232	200	174			
(t=3 1/2")	4X4-W4.0XW4.0	0.120	400	400	400	400	363	310	267	233			
	6X6-W2.9XW2.9	0.058*	301	238	313	259	217	185	160				
5 1/2"	4X4-W2.9XW2.9	0.087	400	351	400	385	323	275	237	1			
(t=4")	4X4-W4.0XW4.0	0.120	400	400	400	400	400	370	319				
0.00	6X6-W2.9XW2.9	0.058*	339	268	358	296	249	212	183				10
6"	4X4-W2.9XW2.9	0.087*	400	397	400	400	370	315	272	1			
(t=4 1/2")	4X4-W4.0XW4.0	0.120	400	400	400	400	400	400	366				
	4X4-W2.9XW2.9	0.087*	400	400	400	400	400	348					
6 1/2"	4X4-W4.0XW4.0	0.120	400	400	400	400	400	400	1				
(t=5")	4X4-W5.0XW5.0	0.150	400	400	400	400	400	400					
-		275 10765	-	1.50	124		1.50	C18					100

- 1. * As does not meet A.C.I. criterion for temperature and shrinkage.
 2. Recommended conform types are based upon S.D.I. criteria and normal weight concrete.
 3. Superimposed loads are based upon three span conditions and A.C.I. moment confficients.
 4. Load values for single span and double spans are to be reduced.
 5. Superimposed load values in bold type require that mesh be drapped. See page 19.
 6. Vulcraft's painted or galvanized form deck can be considered as permanent support in most building applications. See page 19.
 If uncosted form deck is used, deduct the weight of the sleb from the allowable superimposed uniform loads.

SECTION PROPERTIES

Deck Type	Design Thick	Weight	Ip in ⁴ /ft	In in ⁴ /ft	Sp in ³ /ft	Sn in ³ /tt	Fy
1.5C24	0.0239	1,44	0.136	0.108	0.132	0.120	60
1.5C22	0.0295	1.68	0.183	0.155	0.192	0.186	33
1.5C20	0.0358	2.04	0.222	0.201	0.247	0.234	33
1.5C18	0.0474	2.72	0.295	0.289	0.327	0.318	33



ALLOWABLE UNIFORM LOAD (PSF)

Deck	No. of	Design	1 00000	Clear Sp	san (ftin.)								STATE OF THE PARTY.	4 400	
Type	Spans	Criteria	4.0	4-6	5-0	5-6	6-0	6-6	7-0	7-6	8-0	8-6	9-0	9-6	10-0
-		Fb = 36,000	198	156	127	105	88	75	66	56	50	44	39	36	32
		DEFL. = 1/240	139	98	71	54	41	32	26	21	17	15	12	10	
	1	DEFL. = 1/180	186	130	95	71	55	43	35	28	23	19	16	14	133
		W11	82	60	44	33	25	19	15	11	В	6	4		
- 3		Fb = 36,000	180	142	115	95	80	68	59	51	45	40	36	32	2
		DEFL. = 1/240	180	142	115	96	80	68	56	46	38	31	26	22	19
5C24	2	DEFL. = ¥180	180	142	115	96	80	68	59	51	45	40	35	30	2
		W11	160	122	95	75	60	48	39	31	25	20	16	52	
		Fb = 36,000	225	178	144	119	100	85	73	64	56	50	44	40	3
		DEFL. = N240	225	166	121	91	70	55	44	36	29	25	21	18	1
	3	DEFL. = M180	225	178	144	119	93	73	59	48	39	33	28	23	1 2
	330	W11	172	132	103	81	64	51	40	32	26	21	17	13	1
		Fb = 20,000	160	126	102	85	71	61	52	46	40	35	32	28	2
	1	DEFL = 1/240	160	126	96	72	56	44	35	28	23	20	16	14	1 5
	4	DEFL. = 1/180	160	128	102	85	71	58	47	38	31	26	22	19	1 1
		WIT	57	40	28	20	14	10	6	4					
- 8		Fb = 20,000	155	122	99	82	69	59	51	44	39	34	31	27	2
		DEFL. = 1/240	155	122	99	82	69	59	51	44	39	34	31	27	2
5G22	2	DEFL. = 1/180	155	122	99	82	69	59	51	44	39	34	31	27	2
NUCE		W11	129	94	70	53	40	30	23	17	12	9	6	4	-
- 3		Fb = 20,000	194	153	124	102	86	73	63	55	48	43	38	34	3
- 0		DEFL. = 1/240	194	153	124	102	86	73	61	50	41	34	29	24	2
- 11	3	DEFL. = M80	194	153	124	102	86	73	63	55	48	43	38	33	2
- 1	3	W11	133	97	72	55	41	31	24	18	13	10	7	4	
-					132	109	91	78	67	59	51	46	41	36	3
		Fb = 20,000	206 206	163	116	87	67	53	42	34	28	24	20	17	1
		DEFL. = 1/240	206	160	132	109	90	71	57	46	38	32	27	23	1
	1	DEFL. = 8180		163		36			16	12	9	7	5	3	1
19		W11	87		48		28	21			49	43	39	35	3
i)		Fb = 20,000	195	154	125	103	87	74	64	55	49	43	39	35	3
		DEFL. = 1/240	195	154	125	103	87	74	64	55	49				
.5C20	2	DEFL. = 1/180	195	154	125	103	87	74	64	55		43	39	35	3
		W11	175	134	105	83	66	53	42	34	27	22	18	14	1
		Fb = 20,000	244	193	156	129	108	92	80	69	61	54	48	43	3
- 1	337	DEFL. = 6/240	244	193	156	129	108	92	76	62	51	43	36	31	2
	3	DEFL. = N180	244	193	156	129	108	92	80	69	61	54	48	41	3
		W11	188	145	111	87	68	55	44	35	29	23	19	15	1
		Fb = 20,000	273	215	174	144	121	103	89	78	68	60	54	48	1
		DEFL. = N240	273	212	155	116	90	70	56	46	38	31	27	23	1
	1	DEFL. = 1/180	273	215	174	144	119	94	75	61	50	42	35	30	- 2
	04	W11	132	99	76	60	47	38	31	25	20	17	14	11	L.,
		Fb = 20,000	266	209	170	140	118	100	87	75	66	59	52	47	1
_		DEFL, = 1/240	265	209	170	140	118	100	87	75	66	59	52	47	4
SC18	2	DEFL. = 1/180	265	209	170	140	118	100	87	75	68	59	52	47	4
-		W1 [±]	245	189	150	120	98	80	67	55	46	39	32	27	2
		Fb = 20,000	331	262	212	175	147	125	108	94	83	73	65	59	- 5
		DEFL. = 1/240	331	262	212	175	147	125	105	86	71	59	50	42	3
	3	DEFL. = 1/180	331	262	212	175	147	125	108	94	83	73	65	56	4
	0501	W11	263	204	161	130	106	87	72	61	51	43	36	30	2

¹ W1 is the maximum weight of concrete and deck (W1 in Figure 1 of the SDI Leading Diagrams). Minimum exterior bearing length required is 1.5 inches, Minimum interior bearing length required is 3 inches.

2 C CONFORM

MAXIMUM CONSTRUCTION CLEAR SPANS (S.D.I. CRITERIA)

Total Slab	Deck	Weight		NW Concre l=9 145 Pc		Weight	N	_W Concret =14 110 P	CF
Depth	Type	PSF	1 Span	2 Span	3 Span	PSF	1 Span	2 Span	3 Spar
	2C22	44	5-7	7-4	7-8	34	6-2	8-3	8-4
4 1/2"	2C20	45	6-7	8-9	9-0	34	7-3	9-7	9-11
(t=2 1/2")	2C18	45	8-2	10-4	10-8	35	9-0	11-3	11-7
	2C16	46	9-3	11-6	11-11	36	10-3	12-6	12-11
	2C22	50	5-4	6-9	7-1	39	5- 11	7- 11	8-0
5"	2C20	51	6-3	8-5	8-7	39	6-11	9-2	9-6
(t=3")	. 2C18	51	7-9	9-10	10-2	40	8-7	10-9	_11-2
	/2C16	52	8- 10	11-0	11-4	140	9-9	12-0	12-5
	2C22	56	5-2	6-2	6-6	43	5-8	7-6	7-8
5 1/2"	2C20	57	6-0	8- 1	8-3	43	6-8	8- 10	9-1
(t=3 1/2")	2C18	57	7-5	9-6	9-9	44	8-3	10-5	10-9
	2C16	58	8-5	10-7	10- 11	45	9-4	11-7	12-0
	2C22	62	4- 10	5-9	6- 1	48	5-6	7-0	7-4
6"	2C20	63	5-9	7-9	7- 11	48	6-5	8-7	8-9
(t=4")	2C18	63	7- 1	9- 1	9-5	49	7-11	10-1	10-5
	2C16	64	8- 1	10-2	10-6	49	9-0	11-2	11-7
	2C22	68	4-6	5-4	5-8	52	5-3	6-7	6-11
6 1/2"	2C20	69	5-7	7-6	7-8	53	6-2	8-3	8-6
(t=4 1/2")	2C18	69	6- 10	8- 10	9-1	53	7-7	9-9	10-1
65 55 55 5 F	2C16	70	7-9	9- 10	10-2	54	8-8	10-10	11-3
	2C22	74	4-3	5-0	5-3	57	5- 1	6-2	6-6
7"	2C20	75	5-5	7-2	7-2	57	6-0	8-0	8-3
(t=5")	2C18	75	6-7	8-6	8- 10	58	7-4	9-5	9-9
	2C16	76	7-6	9-6	9- 10	59	8-5	10-6	10-11

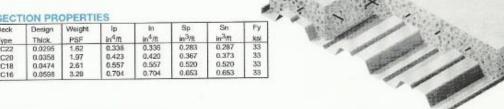
REINFORCED CONCRETE SLAB ALLOWABLE LOADS

Total					Sup	erimposed t	Iniform Loa	d (psf) — 3	Span Cond	ition			
Slab	Reinforceme	ent					Clear Spa	an (ftin.)					1
Depth	W.W.F.	As	5-0	5-6	6-0	6-6	7-0	7- 6	8-0	8-6	9-0	9-6	10-0
	6X8-W2.1XW2.1	0.042*	84	69			- Wes					1	
4 1/2"	6X6-W2.9XW2.9	0.058	114	94			1					1	
(t=2 1/2")	4X4-W2.9XW2.9	0.087	167	138									
	6X6-W2.1XW2.1	0.042*	153	127	107	91	78						
5"	6X8-W2.9XW2.9	0.058*	206	170	143	122	105						
(1=3")	4X4-W2.9XW2.9	0.067	305	252	212	180	155						
	6X6-W2.9XW2.9	0.058*	255	211	177	151	130	113	100				1
5.1/2"	4X4-W2.9XW2.9	0.087	378	313	263	224	193	168	148				
(t=3 1/2")	4X4-W4,0XW4.0	0.120	400	400	351	299	258	224	197	5	/		
	6X6-W2.9XW2.9	0.058*	304	251	211	180	155	135	119	105	94		
6"	4X4-W2.9XW2.9	0.087	400	374	314	267	231	201	177	156	140		
(1:4")	4X4-W4.0XW4.0	0.120	400	400	400	359	309	270	237	210	187		
Marie Company	6X6-W2.9XW2.9	0.058*	353	292	245	209	180	157	138	122	109	98	88
6 1/2"	4X4-W2.9XW2.9	0.087*	400	400	365	311	268	234	205	182	162	146	131
(t=4 1/2")	4X4-W4.0XW4.0	0.120	400	400	400	400	361	315	277	245	219	196	177
	4X4-W2.9XW2.9	0.087*	400	400	400	355	306	266	234	207	185	168	150
7	4X4-W4.0XW4.0	0.120	400	400	400	400	400	360	316	280	250	224	202
(t=5")	4X4-W5.0XW5.0	0.150	400	400	400	400	400	400	3.59	344	307	276	249
and the same of th	Australia	*	2022		20	20			2018		1000	2016	-

- * As does not meet A.C.I. ofterion for temperature and shrinkage.

 Recommended conform types are based upon S.D.I. oritaria and normal weight concrete.

 Superimposed leads are based upon three span conditions and A.C.I. moment coefficients.

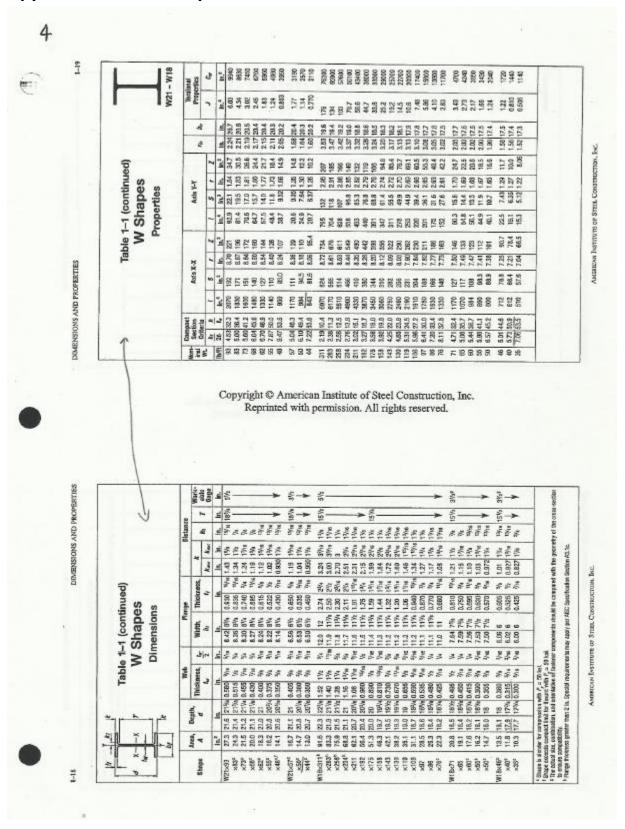

 Load values for single span and double spans are to be reduced.

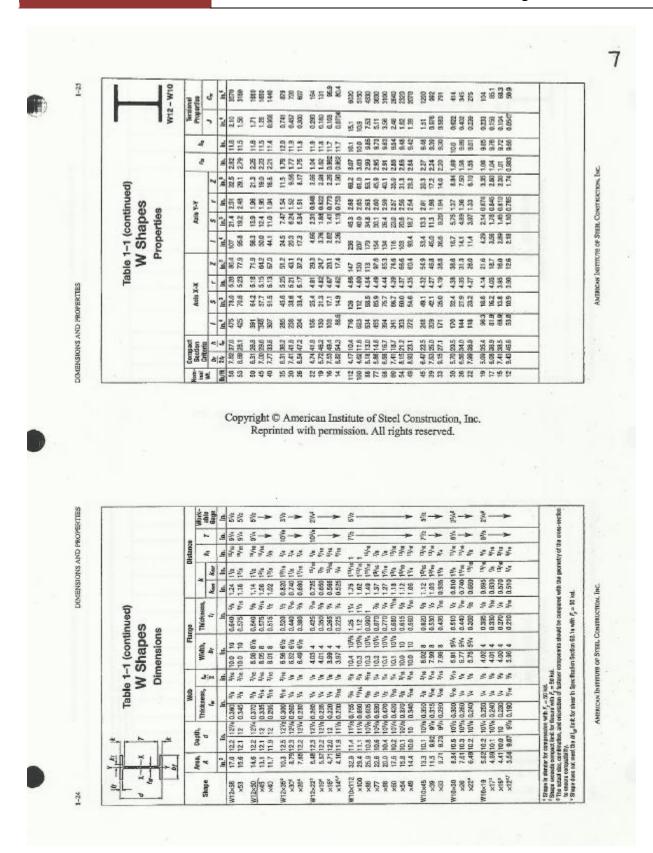
 Superimposed lead values in bold type require that mesh be draped. See page 19.

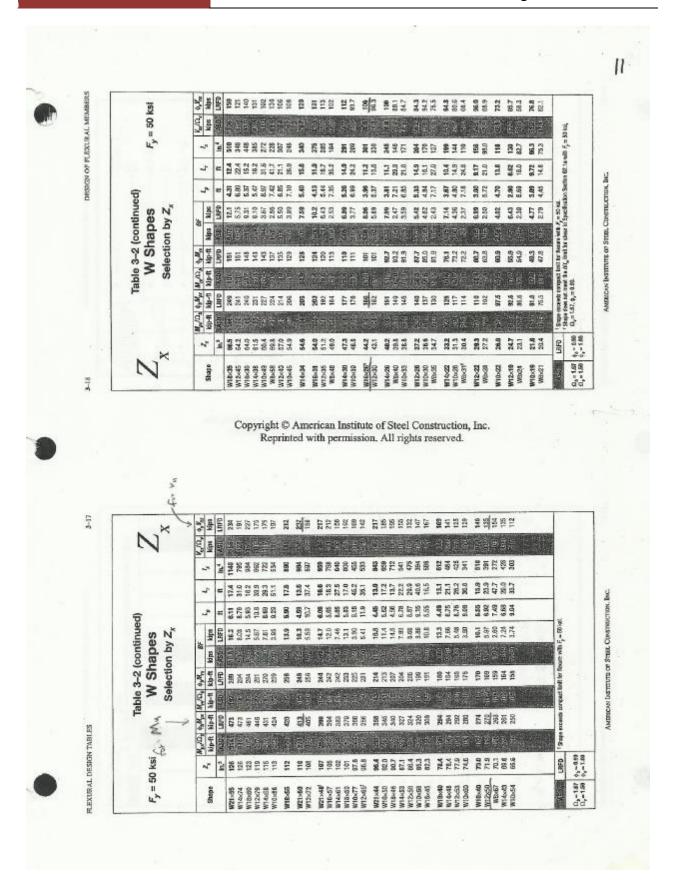
 Vulcraft's peinted or galvanized form deck can be considered as permanent support in most building applications. See page 19.

 If uncoated form deck is used, deduct the weight of the slab from the allowable superimposed uniform leads.

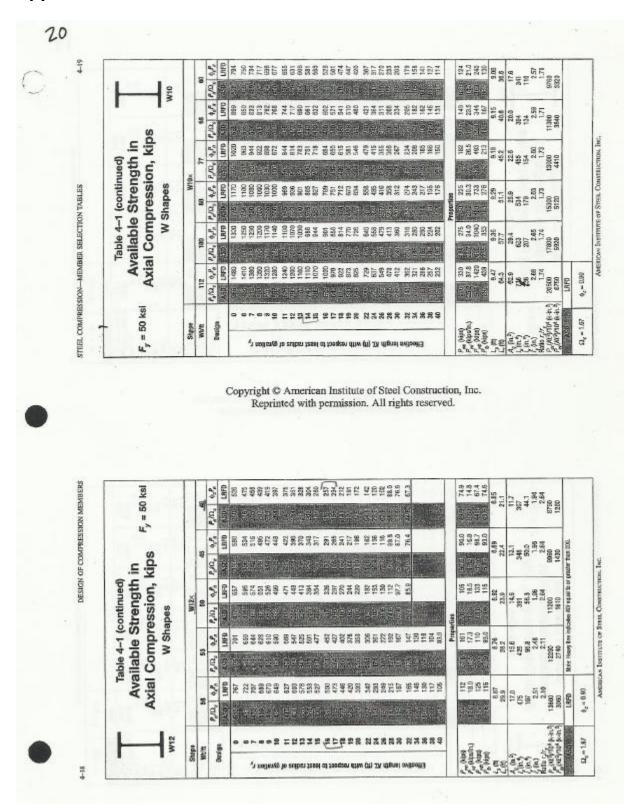
Deck Type	Design Thick	Weight	Ip in ⁴ /ft	In in ⁴ /ft	Sp in ³ /ft	Sn in ³ /ft	Fy ksi
2C22	0.0295	1.62	0.338	0.336	0.283	0.287	33
2C20	0.0358	1.97	0.423	0.420	0.367	0.373	33
2C18	0.0474	2.61	0.557	0.557	0.520	0.520	33
2C16	0.0598	3.29	0.704	0.704	0.663	0.653	33

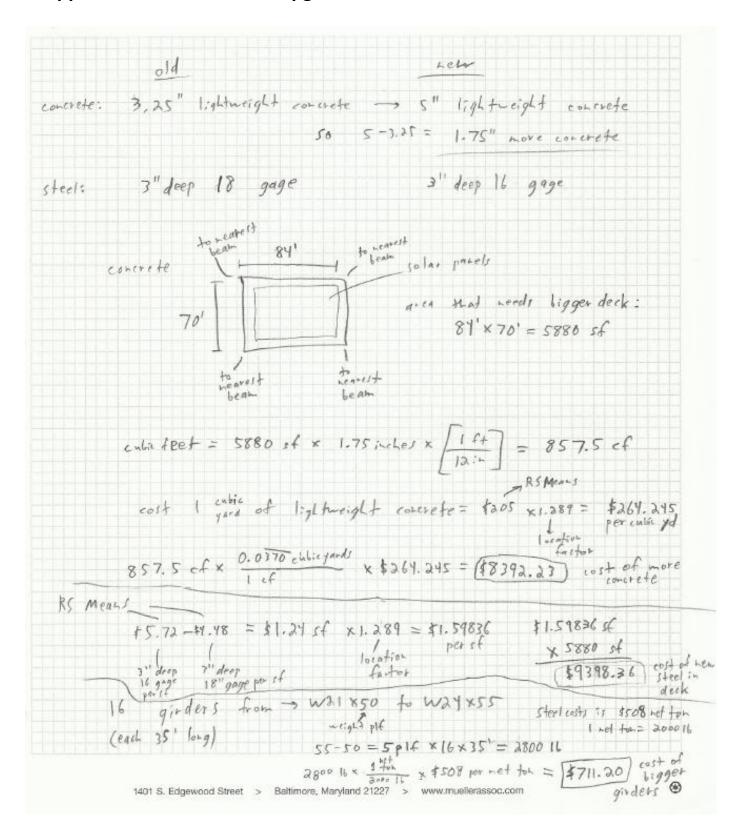



ALL OW	ABLE	UNIFORM	LOAD	PSF
MILLOTT	Color limited	OTHE OTHER	E ALL TOP / TANK	4 20 1


Deck	No. of	Design		Clear	Span (ftin.)			10000		-			10.1	10.0	46.0
ype	Soans	Criteria	5-0	5-6	6-0	6-6	7-0	7-6	8-0	8-6	9-0	9-6	10-0	10-6	11-1
		Fb = 20.000	151	125	105	89	77	67	59	52	47	42	38	34	31
		DEFL. = 1/240	151	125	103	81	65	53	43	36	30	26	22	19	17
	1	DEFL. = V180	151	125	105	89	77	67	58	48	41	34	30	26	22
	1.0	WI ¹	68	47	37	29	23	18	14	11	9	7	5	4	3
		Fb = 20,000	153	127	105	91	78	6B	60	53	47	42	38	35	32
		DEFL. = 9/240	153	127	106	91	78	68	60	53	47	42	38	35	33
C22	2	DEFL. = I/180	153	127	106	91	78	68	60	53	47	42	38	35	30
0066		W11	75	66	59	53	48	43	37	31	25	21	17	14	13
		Fb = 20,000	191	158	133	113	98	85	75	66	59	53	48	43	4
		DEFL = 1/240	191	158	133	113	98	85	75	66	57	49	42	36	3
	- 8		191	158	133	113	98	85	75	68	59	53	48	43	4
	3	DEFL = 9180 W(11	80	71	63	57	51	48	39	32	26	22	18	15	1:
_				162	136	116	100	87	76	68	60	54	49	44	4
		Fb = 20,000	196			101	81	66	54	45	38	32	28	24	2
	100	DEFL. = V240	196	162	128	116	100	87	72	60	51	43	37	32	2
	1	DEFL. = 1/180	196	162	136		117000	1000		22	18	15	13	11	1
		Wi	89	71	57	46	38	31	26		61	55	50	45	4
		Fb = 20,000	199	164	138	118	101	88	78	69		55	50	45	4
		DEFL. = U240	199	164	138	118	101	88	78	69	61	10000	77	45	4
2C20	2	DEFL. = V180	199	164	138	118	101	88	78	69	61	55	50	25	
		W11	118	105	95	86	78	68	58	49	41	35	30		2
		Fb = 20,000	249	206	173	147	127	111	97	86	77	69	62	56	5
		DEFL. = 1/240	249	206	173	147	127	111	97	85	72	61	52	45	3
	3	DEFL. = 1/180	249	206	173	147	127	111	97	86	77	69	62	56	5
	100	W11	116	104	93	85	77	71	62	53	45	39	33	28	2
		Fb = 20,000	277	229	193	164	141	123	108	96	86	77	69	63	- 6
		DEFL = 1/240	277	219	169	133	106	87	71	59	50	43	37	32	2
	1	DEFL. = V180	277	229	193	164	141	115	95	79	67	57	49	42	3
	100	W11	145	116	96	79	66	56	47	40	35	30	26	23	2
		Fb = 20.000	277	229	193	164	141	123	108	96	86	77	69	63	5
		DEFL. = 1/240	277	229	193	164	141	123	108	96	86	77	69	63	5
2C18	2	DEFL. = U180	277	229	193	164	141	123	108	96	86	77	69	63	5
2610	- 4	W11	211	190	173	144	121	103	88	76	66	57	49	43	3
	_	Fb = 20,000	347	287	241	205	177	154	135	120	107	98	87	79	7
			347	287	241	205	177	154	135	112	95	80	69	80	9
	- w	DEFL, = 1/240 DEFL, = 1/180	347	287	241	205	177	154	135	120	107	96	87	79	6
	3				185	155	131	112	96	83	71	62	54	47	4
_	-	W11	229	206	242	206	178	155	136	121	107	96	87	79	1 7
		Fb = 20,000	348	288	214	168	135	109	90	75	63	54	46	40	3
	1	DEFL. = 1/240	348	277	6007	206	178	146	120	100	84	72	62	53	1 4
	1	DEFL. = V180	345	288	242		10000		66	57	49	43	38	34	3
		WI!	192	156	128	107	90	77			107	96	87	79	1
		Fb = 20,000	348	288	242	206	178	155	136	121	107	96	87	79	1 2
		DEFL. = 1/240	348	288	242	206	178	155	136	121		96	87	79	1 5
2C16	2	DEFL. = V180	348	288	242	206	178	155	136	121	107	76	67	59	1
-		W11	328	268	222	186	158	135	116	101	87	-		99	
		Fb = 20,000	435	360	302	258	222	193	170	151	134	121	109	7.55	
		DEFL. = 1/240	435	360	302	258	222	193	170	142	119	102	87	75	6
	3	DEFL. = 1/180	435	360	302	258	222	193	170	151	134	121	109	99	8
	Proper	W11	352	288	238	200	170	145	125	109	95	83	73	64	5

⁵ W1 is the maximum weight of concrete and deck (W1 in Figure 1 of the SDI Loading Diagrams). Minimum exterior loading length required is 2.0 inches. Minimum interior bearing length required is 4.0 inches.


Appendix AK - W Shapes Selection



Appendix AL – Column Selection

Appendix AM – Structural Upgrades Cost Calculations

